首页 | 本学科首页   官方微博 | 高级检索  
     

基于非随机初始种群遗传算法的分类规则挖掘
引用本文:阮家港,马金平,吕晓慧. 基于非随机初始种群遗传算法的分类规则挖掘[J]. 科学技术与工程, 2009, 9(2)
作者姓名:阮家港  马金平  吕晓慧
作者单位:青岛大学国际商学院,青岛,266071;青岛大学国际商学院,青岛,266071;青岛大学国际商学院,青岛,266071
摘    要:数据挖掘中分类问题一直是数据挖掘领域中研究的热点问题,先后提出了各种分类算法;其中遗传算法被认为是一种高效的分类算法.但是,传统的GA存在着易于陷入局部最优,致使得到的分类规则概括性不强的问题.提出了一种基于非随机初始种群的遗传算法分类规则挖掘算法.算法利用均匀种群方法生成非随机的初始种群,并通过均匀算子确保连续迭代过程中种群的多样性,从而达到防止GA早熟的目的.采用两个标准的公共领域的数据集验证了算法的有效性.实验结果表明,该算法能消除遗传算法在分类挖掘任务中收敛于局部最优的局限性,且能快速挖掘出易于理解的分类规则,提高对知识的理解力.

关 键 词:数据挖掘  分类规则  遗传算法  均匀种群

Mining Classification Rules Based on Genetic Algorithms with Non-random Initial Population
RUAN Jia-gang,MA Jin-ping,Lu Xiao-hui. Mining Classification Rules Based on Genetic Algorithms with Non-random Initial Population[J]. Science Technology and Engineering, 2009, 9(2)
Authors:RUAN Jia-gang  MA Jin-ping  Lu Xiao-hui
Affiliation:School of International Business;Qingdao University;Qingdao 266071;P.R China
Abstract:Classification in data mining is always the hot topic in data mining studies.Various kinds of classified algorithm are proposed successively among which genetic algorithm is considered as a highly effective classification algorithm.However,the traditional GA is easy to go and remain on stuck to a local solution,so the extracted rules have no agreeable generalization ability.Aimed at the question,a classification rule extraction method is proposed based on genetic algorithm with non-random initial population...
Keywords:data mining classification rules genetic algorithm uniform population  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号