首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于粗糙集理论的SVM短期负荷预测方法
引用本文:李元诚,方廷健. 一种基于粗糙集理论的SVM短期负荷预测方法[J]. 系统工程与电子技术, 2004, 26(2): 187-190
作者姓名:李元诚  方廷健
作者单位:1. 中国科学技术大学自动化系,安徽,合肥,230026
2. 中国科学院智能机械研究所,安徽,合肥,230031
摘    要:在分析粗糙集理论方法与支持向量机方法的优势和互补性后,探讨了粗糙集与支持向量机的结合方法,提出了一种基于粗糙集数据预处理的支持向量机预测系统。该系统利用粗糙集理论在处理大数据量、消除冗余信息等方面的优势,减少支持向量机的训练数据,克服支持向量机方法因为数据量太大,处理速度慢等缺点。将该系统应用于短期负荷预测中,与BP神经网络法和标准的支持向量机方法相比,得到了较高的预测精度,从而说明了基于粗糙集理论方法作为信息预处理的支持向量机学习系统的优越性。

关 键 词:粗糙集理论  支持向量机  电力系统  短期负荷预测
文章编号:1001-506X(2004)02-0187-04
修稿时间:2002-12-28

Approach to forecast short-term load of SVM based on rough sets
LI Yuan-cheng,FANG Ting-jian. Approach to forecast short-term load of SVM based on rough sets[J]. System Engineering and Electronics, 2004, 26(2): 187-190
Authors:LI Yuan-cheng  FANG Ting-jian
Affiliation:LI Yuan-cheng~1,FANG Ting-jian~2
Abstract:After analyzing advantage and complementarily of the methods of rough sets (RS) theory and support vector machines (SVM) making an inquiry into combining method of RS with SVM, a kind of SVM forcasting system based on rough sets data preprocess is proposed. Utilizing the advantages of RS theory in processing large data and eliminating redundant information the system has decreased SVM training data and overcome the disadvantages of very large data and slow processig speed caused by SVM approach. In using forecasting short-term load this approach has achieved greater forcasting accuracy comparing with the method of BP neural network and standard SVM. It is denoted that the SVM learning system has advantage as the information preprocesing based on RS approach.
Keywords:rough sets theory  support vector machines  power system  short-term load forecasting
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号