首页 | 本学科首页   官方微博 | 高级检索  
     

空域色噪声背景下双基地MIMO雷达角度估计
引用本文:师俊朋,文方青,艾林,张弓,龚政辉. 空域色噪声背景下双基地MIMO雷达角度估计[J]. 系统工程与电子技术, 2021, 43(6): 1477-1485. DOI: 10.12305/j.issn.1001-506X.2021.06.04
作者姓名:师俊朋  文方青  艾林  张弓  龚政辉
作者单位:1. 国防科技大学电子科学与工程学院, 湖南 长沙 4100732. 三峡大学计算机与信息学院, 湖北 宜昌 4430023. 长江大学电子信息学院, 湖北 荆州 4342004. 南京航空航天大学电子信息工程学院, 江苏 南京 210016
基金项目:国家自然科学基金(62071476);国家自然科学基金(61871218);国家自然科学基金(61701046);国家自然科学基金(61921001);中央高校基本科研业务费专项资金;江苏高校优势学科建设工程;湖南省科技创新计划(2020RC2041);中国博士后面上资助项目;国防科技大学学校科研计划(ZK20-33)
摘    要:空域有色噪声会导致现有多输入多输出(multiple input multiple output,MIMO)雷达算法性能下降,甚至完全失效.针对空域色噪声背景下双基地MIMO雷达联合波离角(direction of departure,DOD)和波达角(direction of arrival,DOA)估计问题,分析了...

关 键 词:多输入多输出雷达  波离角和波达角估计  空域色噪声  张量填充  平行因子分解
收稿时间:2020-11-16

Angle estimation for bistatic MIMO radar with spatially colored noise
Junpeng SHI,Fangqing WEN,Lin AI,Gong ZHANG,Zhenghui GONG. Angle estimation for bistatic MIMO radar with spatially colored noise[J]. System Engineering and Electronics, 2021, 43(6): 1477-1485. DOI: 10.12305/j.issn.1001-506X.2021.06.04
Authors:Junpeng SHI  Fangqing WEN  Lin AI  Gong ZHANG  Zhenghui GONG
Affiliation:1. School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China2. College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China3. School of Electronics and Information, Yangtze University, Jingzhou 434200, China4. College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:Spatially colored noise would lead to performance degradation or even invalidation of multiple input multiple output (MIMO) radar algorithms. For the problem of joint direction of departure (DOD) and direction of arrival (DOA) estimation in bistatic MIMO radar with spatially colored noise, the reason for the failure of the existing algorithms is analyzed. Taking the low-rank property of the noiseless covariance matrix, the sparse feature of the colored noise covariance matrix as well as the multidimensional structure characteristic of the MIMO radar data after matched filtering into consideration, a tensor analysis-based angle estimation is introduced. Firstly, a covariance tensor for the angle estimation is constructed. The colored noise is suppressed via removing the entities that affected by the noise covariance measurement. Then the noiseless covariance tensor is recovered via tensor completion. Thereafter, the factor matrices corresponding to DOD and DOA are achieved via parallel factor (PARAFAC) decomposition. Finally, the DOD and DOA are fitted using least squares algorithm. Simulation results show that the proposed algorithm is not sensitive to the spatially colored noise, and it is free-from the aperture loss. The proposed algorithm performs more accurate estimation performance than the existing matrix and tensor approaches.
Keywords:multiple input multiple output (MIMO) radar  direction of departure (DOD) and direction of arrival (DOA) estimation  spatially colored noise  tensor completion  parallel factor (PARAFAC) decomposition  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号