首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的深度学习网络的SAR图像瞬时海岸线自动提取算法
引用本文:王彬,王国宇. 基于改进的深度学习网络的SAR图像瞬时海岸线自动提取算法[J]. 系统工程与电子技术, 2021, 43(8): 2108-2115. DOI: 10.12305/j.issn.1001-506X.2021.08.11
作者姓名:王彬  王国宇
作者单位:1. 中国海洋大学信息科学与工程学院, 山东 青岛 2661002. 青岛科技大学信息科学技术学院, 山东 青岛 266061
基金项目:国家自然科学基金资助课题(61702295)
摘    要:针对目前合成孔径雷达(synthetic aperture radar,SAR)在对大尺度瞬时海岸线提取方面的图像解译过程中,仍然存在精度低与自动化水平差的问题,提出一种基于深度学习网络的瞬时海岸线自动提取算法.首先,将SAR图像进行Lee滤波增强来抑制相干斑.其次,通过升级残差网络为主干网络,分4级提取海水目标的特征...

关 键 词:海岸线提取  合成孔径雷达图像阴影水体提取  深度学习  编码解码网络
收稿时间:2020-12-16

Instantaneous coastline automatic extraction algorithm for SAR images based on improved deep learning network
Bin WANG,Guoyu WANG. Instantaneous coastline automatic extraction algorithm for SAR images based on improved deep learning network[J]. System Engineering and Electronics, 2021, 43(8): 2108-2115. DOI: 10.12305/j.issn.1001-506X.2021.08.11
Authors:Bin WANG  Guoyu WANG
Affiliation:1. College of Information Science & Engineering, Ocean University of China, Qingdao 266100, China2. School of Information Science & Technology, Qingdao University of Science & Technology, Qingdao 266061, China
Abstract:Aiming at the problems of low accuracy and automation in the process of image interpretation of large-scale instantaneous coastline extraction by synthetic aperture radar (SAR), a instantaneous coastline automatic extraction algorithm based on deep learning network is proposed. Firstly, the enhancing Lee filter is used to suppressing speckle noise for SAR image. Secondly, the features of seawater targets are extracted in four levels by upgrading the residueal network as the backbone network. Then, the four levels of features pass through global convolutional network, dense connection network and decoder network to extract the essential features. The sea water segmentation results are obtained by the upsampling process. Finally, the results can be clearly viewed by separating the coastline using Sobel operator and fusing it with the original SAR image. Compared with the coastline extraction experimental results of full convolutional network and refinement network, the experimental results show that the proposed algorithm has less false alarm and miss alarm results, and the accuracy extraction of the obtained coastline results, which has better performance.
Keywords:coastline extraction  synthetic aperture radar (SAR) image shadow water extraction  deep learning  coding and decoding network  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号