首页 | 本学科首页   官方微博 | 高级检索  
     

交互策略改进MOFA进化的多UAV协同航迹规划
引用本文:来磊,邹鲲,吴德伟,李保中. 交互策略改进MOFA进化的多UAV协同航迹规划[J]. 系统工程与电子技术, 2021, 43(8): 2282-2289. DOI: 10.12305/j.issn.1001-506X.2021.08.30
作者姓名:来磊  邹鲲  吴德伟  李保中
作者单位:空军工程大学信息与导航学院, 陕西 西安 710077
基金项目:国家自然科学基金(61603409);国家自然科学基金(61973314);中国博士后科学基金(2017M623352);中国博士后科学基金(2018T111148);陕西省自然科学基金(2020JM-352);陕西省自然科学基金(2020JM-343)
摘    要:针对无人机(unmanned aerial vehicle,UAV)多目标优化协同航迹规划方法中Pareto最优解集规模随迭代增长,难以选择适合UAV任务特点的协同航迹等问题,提出一种基于交互策略改进多目标萤火虫(multi-objective firefly algorithm,MOFA)进化的多UAV协同航迹规划方...

关 键 词:UAV航迹规划  集群协同  多目标优化  萤火虫算法  种群多样性
收稿时间:2020-10-30

Multi-UAV cooperative path planning based on improved MOFA evolution of interactive strategy
Lei LAI,Kun ZOU,Dewei WU,Baozhong LI. Multi-UAV cooperative path planning based on improved MOFA evolution of interactive strategy[J]. System Engineering and Electronics, 2021, 43(8): 2282-2289. DOI: 10.12305/j.issn.1001-506X.2021.08.30
Authors:Lei LAI  Kun ZOU  Dewei WU  Baozhong LI
Affiliation:Information and Navigation College, Air Force Engineering University, Xi'an 710077, China
Abstract:In view of the problem that the number of Pareto optimal solution sets in the unmanned aerial vehicle (UAV) multi objective path planning method increases with iteration, it is difficult to choose the cooperative path suitable for the task, a multi-UAV cooperative path planning based on improved multi-objective firefly algorithm (MOFA) evolution of interactive strategy is proposed. First, the variable decomposition strategy is used to decompose large scale variables in the firefly algorithm into multiple subpopulations to reduce algorithm search complexity. Then, the Tent chaos initialization strategy and multiple population cycle split merge strategy are used to improve the search performance of the algorithm. Bipolar preference dominance is used and designed the cooperation index to select the cooperative path suitable for the task in the Pareto optimal solution set. The simulation experiments show that the proposed algorithm can accurately find the optimal route planning scenarios that satisfies the focus and synergy according to the task setting, and demonstrate that the efficiently of the proposed algorithm.
Keywords:UAV path planning  swarm cooperation  multi objective optimization  firefly algorithm  population diversity  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号