首页 | 本学科首页   官方微博 | 高级检索  
     

基于核函数强化学习的抗干扰频点分配
引用本文:江志炜,黄洋,吴启晖. 基于核函数强化学习的抗干扰频点分配[J]. 系统工程与电子技术, 2021, 43(6): 1547-1556. DOI: 10.12305/j.issn.1001-506X.2021.06.12
作者姓名:江志炜  黄洋  吴启晖
作者单位:1. 南京航空航天大学电磁频谱空间认知动态系统工信部重点实验室, 江苏 南京 2111062. 东南大学移动通信国家重点实验室, 江苏 南京 211189
基金项目:国家自然科学基金(61827801);国家自然科学基金(61631020);国家自然科学基金(61901216);江苏省自然科学基金(BK20190400);东南大学移动通信国家重点实验室开放研究基金(2020D08)
摘    要:针对学习未知动态的干扰图样问题,提出一种基于核函数强化学习的雷达与通信抗干扰频点协作算法.与需要获得干扰模式、参数等先验知识的研究相反,所提算法能够利用过去时隙中频点的使用情况来优化抗干扰频点分配策略.首先,通过核函数的强化学习来应对维度诅咒问题.其次,基于近似线性相关性的在线内核稀疏化方法,确保了抗干扰频点分配算法的...

关 键 词:抗干扰  强化学习  核方法  Q学习
收稿时间:2020-12-28

Anti-interference frequency allocation based on kernel reinforcement learning
Zhiwei JIANG,Yang HUANG,Qihui WU. Anti-interference frequency allocation based on kernel reinforcement learning[J]. System Engineering and Electronics, 2021, 43(6): 1547-1556. DOI: 10.12305/j.issn.1001-506X.2021.06.12
Authors:Zhiwei JIANG  Yang HUANG  Qihui WU
Affiliation:1. Key Laboratory of Ministry of Industry and Information Technology on Electromagnetic Spectrum Spatial Cognitive Dynamic Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 211189, China
Abstract:Aiming at the problem of learning unknown dynamic interference patterns, a frequency point cooperation algorithm for radar and communication anti-interference based on kernel function reinforcement learning is proposed. On the contrary, the proposed algorithm can optimize the anti-interference frequency allocation strategy by using the usage of the intermediate frequency points in the past slots. Firstly, the problem of curse of dimensions is solved by reinforcement learning of kernel function. Secondly, the online kernel sparsity method based on approximate linear correlation ensures the sparsity of anti-interference frequency assignment algorithm. Finally, simulation results verify the effectiveness of the proposed algorithm. Due to the learning of sparse codewords for the dynamic characteristics of the system, compared with the traditional anti-interference frequency assignment algorithm based on Q-learning, the proposed algorithm has shorter convergence time and can quickly avoid the interference of external unknown interference sources.
Keywords:anti-interference  reinforcement learning  kernel method  Q-learning  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号