首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的地基单站GPS反演大气剖面
引用本文:林乐科,张业荣,赵振维,李建儒. 基于支持向量机的地基单站GPS反演大气剖面[J]. 南京邮电大学学报(自然科学版), 2009, 29(4): 64-68
作者姓名:林乐科  张业荣  赵振维  李建儒
作者单位:南京邮电大学,通信与信息工程学院,江苏,南京,210003;中国电波传播研究所,山东,青岛,266107;南京邮电大学,通信与信息工程学院,江苏,南京,210003;中国电波传播研究所,山东,青岛,266107
摘    要:提出基于支持向量机的地基单站GPS遥感大气剖面的反演方法,主要包括经典支持向量机、最小二乘支持向量机、相关向量机3种方法,利用青岛地区的历史数据进行了仿真反演对比研究,并与神经网络反演方法进行比较,结果表明支持向量机能够有效地应用于地基单站GPS大气遥感领域.

关 键 词:大气剖面  地基单站GPS  支持向量机  神经网络

Retrieving Atmospheric Profiles Based on Support Vector Machine and Singular Ground-based GPS Receiver
LIN Le-ke,ZHANG Ye-rong,ZHAO Zhen-wei,LI Jian-ru. Retrieving Atmospheric Profiles Based on Support Vector Machine and Singular Ground-based GPS Receiver[J]. JJournal of Nanjing University of Posts and Telecommunications, 2009, 29(4): 64-68
Authors:LIN Le-ke  ZHANG Ye-rong  ZHAO Zhen-wei  LI Jian-ru
Affiliation:LIN Le-ke1,2,ZHANG Ye-rong1,ZHAO Zhen-wei2,LI Jian-ru21.College of Telecommunications & Information Engineering,Nanjing University of Posts , Telecommunications,Nanjing 210003,China2.China Research Institute of Radio Wave Propagation,Qingdao 266107,China
Abstract:The techniques of retrieving atmospheric profiles are proposed herein based on support vector machine(SVM) and singular ground-based GPS,which include classical SVM,least squares SVM,and relevance vector machine(RVM).The new methods are compared with BP-ANN networks method by simulation based on the historical radiosonde data in Qingdao,showing that the methods based on SVM can be applied to surface-based microwave atmospheric remote sensing effectively.
Keywords:atmospheric profile  singular ground-based GPS  support vector machine  neural neetwork  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号