首页 | 本学科首页   官方微博 | 高级检索  
     

基于插值法计算Dixon结式
引用本文:李耀辉,冯勇,薛继伟. 基于插值法计算Dixon结式[J]. 燕山大学学报, 2005, 29(2): 103-111
作者姓名:李耀辉  冯勇  薛继伟
作者单位:1. 华北科技学院,计算机科学与技术系,北京,101601;中国科学院成都计算机应用研究所,四川,成都,610041
2. 中国科学院成都计算机应用研究所,四川,成都,610041
基金项目:国家973计划项目(No.2004CB318003)
摘    要:在经典方法中,计算Dixon多项式和结式都要涉及到行列式的计算。由于行列式中的元素通常是符号化的,即其中每个元素都是关于变元(或参数)的多项式,从而导致行列式展开时的中间计算过程膨胀(甚至爆炸)。对此,提出在结式计算过程中将符号计算数值化,即对变元选择不同的插值点,将行列式中的元素数值化。然后,求出在不同插值点下行列式的值。最后,根据Zippel多变元插值法或其他相关插值算法计算出Dixon多项式和结式。采用插值方法有效克服了经典算法的中间计算过程膨胀问题。

关 键 词:Dixon结式  插值法  计算过程  行列式  多项式  经典方法  符号计算  插值算法  经典算法  插值方法  数值化  插值点  符号化  元素  变元  膨胀  中间
文章编号:1007-791X(2005)02-0103-09
修稿时间:2005-01-04

Computing Dixon resultant by interpolation algorithms
LI Yao-hui,FENG Yong,XUE Ji-wei. Computing Dixon resultant by interpolation algorithms[J]. Journal of Yanshan University, 2005, 29(2): 103-111
Authors:LI Yao-hui  FENG Yong  XUE Ji-wei
Affiliation:LI Yao-hui1,2,FENG Yong1,XUE Ji-wei1
Abstract:When usingclassical method to compute Dixon resultant, ithastodeal withthe computation of matrices anddeterminant in the procedure of computing Dixon polynomial and resultant. However, each entry in matricesis symbolic, that is, it is a poly- nomial in variable s . This leads to the intermediate expression swell or explosion) problem in the computation. In order to ( ) ( avoid this, we transformthe symbolic computation to numerical computation, i.e., selectsupportpointsforvariables and evaluate the valueto each entries of determinant. As theresult of this, the symbolicdeterminantisbecome numerical ones anditsdeterminant can be computedout. We canget the interpolative polynomial by selectingdifferentsupportpoints. Finally, the Dixonpolynomial and resultant are obtained by interpolation methods. It is avoided that the intermediate expression swell problem is inevitable in the classical computation of the Dixon resultant .
Keywords:Dixon polynomial  multivariate interpolation  Dixon resultant  intermediate expression swell  sparse polynomial  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号