首页 | 本学科首页   官方微博 | 高级检索  
     

重积分计算的分层抽样原理
引用本文:陈家鑫. 重积分计算的分层抽样原理[J]. 汕头大学学报(自然科学版), 1995, 10(1): 10-16,27
作者姓名:陈家鑫
作者单位:汕头大学数学系
摘    要:K重积分的计算中,我们对联合概率密度函数f(x1,x2,…,xk)实施有限加权展开然后,按照各联合概率密度fi(x1,x2,…,xk)摸拟抽样值{g(ξ(i,t)),t=1,2,…,Ni,i=1,2,…,L},由下式建立J的估计量证明了这种分层抽样方法降低方差,同时给出最小方差的一般原理.

关 键 词:重积分;剖分;加权和;抽样;统计模拟;估计量;方差;最大最小原理

The principle of stratified sampling for evaluation on the multiple integrals
Chen Jiaxin. The principle of stratified sampling for evaluation on the multiple integrals[J]. Journal of Shantou University(Natural Science Edition), 1995, 10(1): 10-16,27
Authors:Chen Jiaxin
Abstract:In the evaluation of multiple integrals the multidimensional probability density function f(x1,x2,…,xk) was expanded in terms of finite weighted sum as follow:Accordingly we simulated the sample values {g(ξ(i,t)),t =1, 2, …,Ni,i = 1, 2, …,L },and set up the estimator J. for J:It has been proved that the variance can be reduced by means of this method of stratified sampling. Also, the general principle of minimum variance is presented.
Keywords:multple integrals  partition  weighted sum  sampling  statistical simulation  estimator  variance  maximum-minimum principle  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号