摘 要: | 设G为n阶加法Abe1群 ,S ={ai} 2n- 1 i=1 是G中元序列 ,对a∈G用r(S ,a)表示a写成S中n项之和的方法数 .196 1年Erd s ,Ginzburg与Ziv证明了n为素数时r(S ,0 )≥ 1.1996年高维东指出n是素数 p时 r(S ,0 )≡ 1(mod p) .证明了下述结果 :假定有特征为素数 p的域使G为其加法子群 ,则r(S ,0 )≡ 1(modp) ,且对a∈G { 0 }有r(S ,a)≡ 0 (mod p) .这推广了高维东的工作 .
|