首页 | 本学科首页   官方微博 | 高级检索  
     

基于UKF-IMM的双红外机动目标跟踪算法
引用本文:江宝安,万群. 基于UKF-IMM的双红外机动目标跟踪算法[J]. 系统工程与电子技术, 2008, 30(8)
作者姓名:江宝安  万群
作者单位:1. 电子科技大学电子工程学院,四川,成都,610054;重庆邮电大学,重庆,400065
2. 电子科技大学电子工程学院,四川,成都,610054
基金项目:国家自然科学基金,教育部跨世纪优秀人才培养计划
摘    要:为了有效解决红外机动目标跟踪精度问题,提出基于UKF的交互式多模型IMM红外机动目标跟踪算法.该方法采用Markov过程描述多个目标模型间的切换,同时导出滤波器输入输出均加权的交互式算法.滤波器采用UKF,避免计算扩展卡尔曼滤波EKF所需的Jacobi矩阵,适用于非线性、非高斯的目标系统模型和观测模型,同时UKF可供多个模型共用,便于软、硬件实现.最后,用双红外探测器对S型机动目标进行仿真实验,给出应用该方法的具体步骤,验证了IMM-UKF的稳定性、有效性和精确性.

关 键 词:机动跟踪  红外目标  无迹卡尔曼滤波  交互式多模型

Maneuvering target passive tracking with dual infrared observers using IMM algorithm based on UKF
JIANG Bao-an,WAN Qun. Maneuvering target passive tracking with dual infrared observers using IMM algorithm based on UKF[J]. System Engineering and Electronics, 2008, 30(8)
Authors:JIANG Bao-an  WAN Qun
Abstract:For tackling the accuracy problem of tracking a maneuvering target by infrared sensors,an algorithm of UKF-IMM(unscented Kalman filter-interacting multiple model) is presented.This method use Markov process to describe swiching probability among the models,while weighting means of inputs and outputs of filters.UKF is a good algorithm for nonlinear,noguassian system models and measure models,while commonly used by all models.UKF needn't compute Jacobi matrix of EKF(extended Kalman filter),easier to implement by software or hardware.Finally,simulation results in passive maneuvering target tracking using dual infrared sensors show that the proposed method is more stable,effective,and better accuracy.
Keywords:maneuvering tracking  infrared target  unscented Kalman filter  interacting multiple model
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号