首页 | 本学科首页   官方微博 | 高级检索  
     

动态场景中运动目标检测与跟踪
引用本文:施家栋,王建中. 动态场景中运动目标检测与跟踪[J]. 北京理工大学学报, 2009, 29(10): 858-861
作者姓名:施家栋  王建中
作者单位:北京理工大学,爆炸科学与技术国家重点实验室,北京,100081;北京理工大学,爆炸科学与技术国家重点实验室,北京,100081
基金项目:国家部委预研项目,国家重点实验室自主研究课题 
摘    要:为了在静态和动态场景中均能实现对运动目标的检测与跟踪,提出了基于运动检测和视频跟踪相结合的视频监控方法. 建立四参数运动仿射模型来描述全局运动,采用块匹配法对其进行参数估计;采用基于全局运动补偿的Horn-Schunck算法检测出运动目标;使用卡尔曼滤波对运动目标的质心位置、宽度和高度进行跟踪. 实验结果表明,该方法能够有效地对静态和动态场景中运动目标进行检测与跟踪.

关 键 词:动态场景  全局运动  光流法  卡尔曼滤波器
收稿时间:2008-09-11

Moving Objects Detection and Tracking in Dynamic Scene
SHI Jia-dong and WANG Jian-zhong. Moving Objects Detection and Tracking in Dynamic Scene[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2009, 29(10): 858-861
Authors:SHI Jia-dong and WANG Jian-zhong
Affiliation:State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:A visual surveillance system is presented based on the integration of motion detection and visual tracking in static and dynamic scene image sequence. Four parameters model is established for global motion, and the model parameters estimated by block matching. Then moving objects regions were detected by Horn-Schunck algorithm with global motion vectors modified. The center of mass, width and height of moving objects were tracked by Kalman filter. Experimental results showed that this method is effective for moving objects detection and tracking in static and dynamic scenes.
Keywords:dynamic scene  global motion  optical flow method  Kalman filter
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号