首页 | 本学科首页   官方微博 | 高级检索  
     

混沌Arneodo系统非线性与自适应模糊神经网络控制
引用本文:李医民,李淑萍. 混沌Arneodo系统非线性与自适应模糊神经网络控制[J]. 江苏大学学报(自然科学版), 2005, 26(Z1): 58-61
作者姓名:李医民  李淑萍
作者单位:江苏大学理学院,江苏,镇江,212013
基金项目:江苏省教育厅自然科学基金资助项目(01KJB180003)
摘    要:针对Arneodo系统的参数不确定性,阐述了Arneodo控制系统中抵消非线性的基本思想和设计方法.利用LQR线性反馈技术,设计了具有稳定裕度的二次型最优控制器,同时在控制器中引入一个用于函数逼近的自适应模糊神经网络,利用该神经网络抵消控制系统中的非线性项,使受控系统的某一状态变量可被镇定到任意参考位置.这种具有模糊神经网络的控制器实现了参数不确定系统的精确反馈线性化控制.通过仿真比较研究,说明了反馈线性化与自适应神经网络相结合的控制器具有良好的控制性能,且更易实现.

关 键 词:混沌系统  反馈线性化  自适应模糊神经网络  混合学习算法
文章编号:1671-7775(2005)06A-0058-04
修稿时间:2004-12-05

Nonlinear and adaptive fuzzy control based on neural network for Arneodo system
LI Yi-min,LI Shu-ping. Nonlinear and adaptive fuzzy control based on neural network for Arneodo system[J]. Journal of Jiangsu University:Natural Science Edition, 2005, 26(Z1): 58-61
Authors:LI Yi-min  LI Shu-ping
Abstract:Basic thought and design method of nonlinear system's feedback linearization in(Arneodo's) control system are introduced.By using the method of feedback linearization(LQR),LQR optimal controller and an adaptive neural network based fuzzy inference system used for function approach in controller are designed.Arneodo signal is used to track a desired signal at random. The controller including neural netwok based on fuzzy system can realize the precise feedback linearization of Arneodo system.The simulation is conducted and the result is compared with other control methods which proves the effect of the controller combining feedback linearization and ANFIS of Arneodo system.
Keywords:chaos system  feedback linearization  adaptive neural network based fuzzy inference system  hybrid learning algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号