首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的通信网络数据关键特征挖掘
作者姓名:沈毅波
作者单位:漳州职业技术学院
摘    要:深度学习是挖掘数据关键特征的重要技术手段,为准确分析通信网络数据特征,并保障质量,提出基于深度学习的通信网络数据关键特征挖掘方法。选取接入率、可用性以及覆盖率等七个指标作为通信网络质量核心性能指标,将卷积神经网络与径向基神经网络相结合,构建深度学习网络结构,将该性能指标作为标签参数,将所得到的标签参数的聚类与求和结果作为深度网络的标签数据,通过前向传播将标签数据输入卷积神经网络的输入层内,经过不同隐层的变换与映射至输出层位置,并采用量子粒子群算法求解深度学习网络最优参数,输出通信网络数据关键特征挖掘结果。经实验结果表明,所提方法的通信网络数据关键特征挖掘率在95%以上,能够准确预测未来短时间段内的通信网络质量。

关 键 词:深度学习  通信网络数据  特征挖掘  神经网络  标签数据  量子粒子群
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号