摘 要: | 针对在大量数据背景下云计算资源调度模型存在调度效率低、分配不合理等问题,提出一种基于改进鲸鱼优化算法(m-WOA)的云计算资源调度方法。提出了云计算资源调度模型,针对基本鲸鱼优化算法存在迭代后期种群多样性减弱、易陷入局部最优等不足,提出使用Tent混沌反向学习策略来增强种群多样性;并使用精英随机组合策略平衡算法开发和探索能力。将改进后的m-WOA算法用于数值仿真实验和云计算资源调度模型求解。实验结果表明,m-WOA具有更好的收敛精度和更强的稳定性;m-WOA能有效减少云计算完成时间和能源消耗,并提供更合理的资源调度分配方案,从而提升云计算资源利用率。
|