首页 | 本学科首页   官方微博 | 高级检索  
     

有限秩算子及n-自反性
引用本文:李鹏同,陈培鑫. 有限秩算子及n-自反性[J]. 曲阜师范大学学报, 1997, 0(3)
作者姓名:李鹏同  陈培鑫
作者单位:山东工程学院基础部(李鹏同),华东石油大学数理系(陈培鑫)
摘    要:主要工作:(1)设S是向量空间V上的有限维线性算子空间,SF表示S中全体有限秩算子,则S是n_代数自反的等价于SF是n_代数自反的;(2)S是Banach空间X上的连续线性算子空间,当S满足一定条件时,S是n_拓扑代数自反的等价于SF是n_拓扑代数自反的

关 键 词:n-自反  n-代数自反  n-拓扑代数自反  有限秩算子

FINITE_RANK OPERATORS AND n _REFLEXIVITY
Abstract:In this paper two results given by D. Larson are generalized. First, let S be a finite dimensional linear subspace of the algebra of all linear operators form vector space V into itself, and let S F denote the space of all finite_rank operators in S , then S is n _algebraically reflexive iff S F is n _algebraically reflexive. Second, let S be a linear subspace of the algebra of all continuous linear operators on a Banach space X , then S is n _topologically algebraically reflexive iff S F is n _topologically algebraically reflexive when S satisfies some properties.
Keywords:n _Reflexive n _Algebraically reflexive n _Topologically algebraically reflexive Finite_rank operator
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号