有限秩算子及n-自反性 |
| |
引用本文: | 李鹏同,陈培鑫. 有限秩算子及n-自反性[J]. 曲阜师范大学学报, 1997, 0(3) |
| |
作者姓名: | 李鹏同 陈培鑫 |
| |
作者单位: | 山东工程学院基础部(李鹏同),华东石油大学数理系(陈培鑫) |
| |
摘 要: | 主要工作:(1)设S是向量空间V上的有限维线性算子空间,SF表示S中全体有限秩算子,则S是n_代数自反的等价于SF是n_代数自反的;(2)S是Banach空间X上的连续线性算子空间,当S满足一定条件时,S是n_拓扑代数自反的等价于SF是n_拓扑代数自反的
|
关 键 词: | n-自反 n-代数自反 n-拓扑代数自反 有限秩算子 |
FINITE_RANK OPERATORS AND n _REFLEXIVITY |
| |
Abstract: | In this paper two results given by D. Larson are generalized. First, let S be a finite dimensional linear subspace of the algebra of all linear operators form vector space V into itself, and let S F denote the space of all finite_rank operators in S , then S is n _algebraically reflexive iff S F is n _algebraically reflexive. Second, let S be a linear subspace of the algebra of all continuous linear operators on a Banach space X , then S is n _topologically algebraically reflexive iff S F is n _topologically algebraically reflexive when S satisfies some properties. |
| |
Keywords: | n _Reflexive n _Algebraically reflexive n _Topologically algebraically reflexive Finite_rank operator |
本文献已被 CNKI 等数据库收录! |