首页 | 本学科首页   官方微博 | 高级检索  
     

钻孔灌注桩单桩竖向承载力预测方法研究
引用本文:翁光远. 钻孔灌注桩单桩竖向承载力预测方法研究[J]. 科技导报(北京), 2009, 27(4)
作者姓名:翁光远
作者单位:陕西交通职业技术学院公路工程系,西安,710018;西安建筑科技大学土木工程学院,西安,710055
基金项目:国家自然科学基金重大项目,教育部高等学校博士学科点专项科研基金 
摘    要:根据长期的工程实测资料,提出了运用神经网络技术的方法来预测钻孔灌注桩的承载能力,从而达到在施工过程中减少或不做试桩的效果.通过对高层建筑物和大跨度桥梁钻孔灌注桩的静载实验数据分析,选择神经网络方法对承载力进行预测.首先,构造了合理的神经网络模型;接着对神经网络模型经过样本学习训练进行承载能力预测;最后,证实了神经网络技术在预测钻孔灌注桩的承载能力时可以满足工程实际的需要.

关 键 词:神经网络  钻孔灌注桩  承载力预测  学习训练

Prediction Method for Bearing Capacity of Cast-in-Situ Single Pile
WENG Guangyuan. Prediction Method for Bearing Capacity of Cast-in-Situ Single Pile[J]. Science & Technology Review, 2009, 27(4)
Authors:WENG Guangyuan
Affiliation:WENG Guangyuan1,2 1. Department of Highway Engineering,Shaanxi College of Communication Technology,Xi'an 710021,China 2. College of Civil Engineering,Xi'an University of Architecture , Technology,Xi'an 710054,China
Abstract:According to long-term engineering data, a method of neural network is proposed to predict the capacity of cast-in-situ pile. So, construction can be carried out without testing piles or with a small number of tests. Based on the analysis of dead -load experimental data of cast-in-situ pile used in high rise buildings and large-span bridges, prediction of bearing capacity can be made through using neural network technique. A reasonable neural network model is first built and then the neural network model is...
Keywords:neural network  cast-in-situ pile  prediction of bearing capacity  learned and trained  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号