一类非线性发展方程差分法的稳定性 |
| |
作者姓名: | 胡庆云 |
| |
作者单位: | 河海大学理学院,江苏,南京,210098 |
| |
摘 要: | 研究了用差分法求解自治的发展方程时稳定性和收敛性这两个基本概念之间的联系,利用计算时间的有限性和紧致性,在可解集为开集的条件下,得出方程解的邻近也可解的结论.当近似方法同时具备收敛性和稳定性时,方程解必然具备逐点Lipschitz条件.方程解的邻近如果可解并具备逐点Lipschitz条件,则差分法收敛必有稳定界存在,从而差分格式收敛性保证其稳定性,因此可以放弃线性这一重要条件.
|
关 键 词: | 发展方程 非线性 收敛性 稳定性 逐点Lipschitz条件 |
文章编号: | 1000-1980(2007)05-0609-04 |
修稿时间: | 2006-10-13 |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
| 点击此处可从《河海大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《河海大学学报(自然科学版)》下载全文 |
|