首页 | 本学科首页   官方微博 | 高级检索  
     

构造一类八阶周期边值问题极值解的单调性方法
作者姓名:陈善松  高文杰
作者单位:吉林大学数学研究所, 长春 130012
基金项目:国家自然科学基金(批准号:19971036),教育部博士点基金,教育部优秀年轻教师基金.
摘    要:利用单调性技巧研究周期边值问题: u(8)(t)=f(t,u(t),u(4)(t)),u(i)(0)=u(i)(2π), i=0,1,…,7,〖WTBX〗其中f(t,u,v)为Caratheodory函数. 证明如果上述周期边值问题有上解和下解 , 分别表为β(t)和α(t), 并且有β(t)≤α(t), 则可构造2个单调序列{βj }和{ αj}, βj≤αj, 使之于[0,2π]上分别 单调一致收敛于上述问题的极值解. 从而证明了上述周期边值问题解的存在性.

关 键 词:单调性方法  周期边值问题  极值解  
文章编号:1671-5489(2003)01-0001-05
收稿时间:2002-08-23
修稿时间:2002-08-23
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号