首页 | 本学科首页   官方微博 | 高级检索  
     

关于Diophantine方程x^2+y^4=z^5
引用本文:乐茂华. 关于Diophantine方程x^2+y^4=z^5[J]. 云南师范大学学报(自然科学版), 2009, 29(4): 1-5
作者姓名:乐茂华
作者单位:湛江师范学院数学系,广东,湛江,524048
基金项目:国家自然科学基金,广东省自然科学基金 
摘    要:运用无穷递降法证明了:方程X^4-10X^2Y^2+5Y^4=Z^2和X^4-50X^2Y^2+125Y^4=Z^2都没有适合gcd(X,Y)=1以及2|XY的正整数解(X,Y,Z).由此推知:方程x^2+y^4=z^5没有适合gcd(x,y)=1的正整数解(x,y,z),上述结果解决了广义Fermat猜想的一个特殊情况。

关 键 词:Diophantine方程  广义Fermat猜想  无穷递降法

On the Diophantine Equation x2+y4=z5
LE Mao-hua. On the Diophantine Equation x2+y4=z5[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2009, 29(4): 1-5
Authors:LE Mao-hua
Affiliation:LE Mao - hua (Department of Mathematics ,Zhanjiang Normal College ,Zhanjiang 524048, China)
Abstract:Using the infinite descent method, we prove that the equations X^4 - 10X^2 Y^2 + 5 Y^4 = Z^2 and X^4 - 50X^2Y^2 + 125Y^4 = Z^2 have no positive integer solution (X,Y,Z) with gcd (X,Y) = 1 and2| XY. It implies that the equation x^2+ y^4= z^5 has no positive integer solution (x,y,z) with gcd (x,y) = 1 . Thus, a special case of the generalized Fermat conjecture is solved.
Keywords:diophantine equation  generalized Fermat conjecture  infinite descent
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号