首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的沪深300指数预测研究
引用本文:叶园,何穗. 基于支持向量机的沪深300指数预测研究[J]. 湖北师范学院学报(自然科学版), 2009, 29(3): 68-73
作者姓名:叶园  何穗
作者单位:华中师范大学,数学与统计学院,湖北,武汉,430079
摘    要:基于沪深300股指时间序列的特点,提出了一种基于主成分分析和支持向量机相结合的方法,将影响沪深300股指的各个因子通过主成分法进行信息的提取,然后用支持向量回归机进行学习预测.最后通过比较预测值与真实值,发现所预测的10个时段的收盘价均方误差为2.11617,且由预测值和真实值对比的条形图发现预测趋势基本准确,可见运用支持向量机对沪深300指数进行预测是可行的.

关 键 词:沪深300指数  主成分分析  支持向量机

Support vector machines-based forecasting in Shanghai and Shenzheng 300 index
YE Yuan,HE Sui. Support vector machines-based forecasting in Shanghai and Shenzheng 300 index[J]. Journal of Hubei Normal University(Natural Science), 2009, 29(3): 68-73
Authors:YE Yuan  HE Sui
Affiliation:College of Mathematics and Statistics;Huazhong Normal University;Wuhan 430079;China
Abstract:Based on the characteristic of the time series of Shanghai and Shenzhen 300 index,proposed a method which based on combination of Principal Component Analysis(PCA) and Support Vector Machine(SVM).Firstly,extract the main information of the factors which influence Shanghai and Shenzhen 300 index through PCA,then SVM to train and forecast.Finally,in order to compare predicted value and true value,we calculate the Mean Square Error(MSE) of the predicted closing price in ten time periods,which is 2.11617.Moreov...
Keywords:Shanghai and Shenzhen 300 index  principal component analysis  support vector machine  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号