首页 | 本学科首页   官方微博 | 高级检索  
     

线性随机微分延迟方程复合Euler方法的均方收敛性
引用本文:周立群. 线性随机微分延迟方程复合Euler方法的均方收敛性[J]. 黑龙江大学自然科学学报, 2006, 23(3): 326-330
作者姓名:周立群
作者单位:哈尔滨工业大学,控制工程与科学系,黑龙江,哈尔滨,150001;齐齐哈尔大学,数学系,黑龙江,齐齐哈尔,161006
摘    要:定义了复合Euler方法,把其应用到线性随机微分延迟方程上.详细地研究了复合Euler方法的均方收敛性,证明其收敛阶是强0.5阶,并给出数值试验.

关 键 词:随机微分延迟方程  复合Euler方法  均方收敛性  数值解
文章编号:1001-7011(2006)03-0326-05
修稿时间:2005-01-16

Mean square convergence of the composite Euler method for a linear stochastic differential delay equation
ZHOU Li-qun. Mean square convergence of the composite Euler method for a linear stochastic differential delay equation[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(3): 326-330
Authors:ZHOU Li-qun
Abstract:[WT5BZ]The composite Euler method is defined, and is applied to a linear stochastic differential delay equation. Convergence of the composite Euler method in the mean square sense for a linear stochastic differential delay equation is studied. It is proved that the composite Euler method is convergent with strong order 0.5. The numerical experiments are given.
Keywords:stochastic differential delay equations  composite Euler method  mean square convergence  numerical solution
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号