首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合阈值的清除重复间隔阈值经验模态分解去噪方法
引用本文:王平根,吕敬祥. 基于混合阈值的清除重复间隔阈值经验模态分解去噪方法[J]. 井冈山大学学报(自然科学版), 2019, 40(6): 41-46
作者姓名:王平根  吕敬祥
作者单位:井冈山大学电子与信息工程学院,江西,吉安 343009;井冈山大学电子与信息工程学院,江西,吉安 343009;江西省农作物生长物联网技术工程实验室,江西,吉安 343009
基金项目:国家自然科学基金项目(51867011);江西省教育厅科技计划项目(GJJ180576)
摘    要:
经验模态分解(Empirical mode decomposition,EMD)被认为是一种有潜力的非线性非静态信号去噪方法。传统的经验模态分解阈值去噪在零点附近存在不连续性的缺点,Kopsinis提出了EMD-IIT和EMD-CIIT方法,但这两种方法对阈值过于敏感,即区间极值轻微的偏差就有可能导致去掉整个区间曲线,因此本文提出一种混合阈值算法,结合了EMD-DT和EMD-IT各自的优势。仿真结果表明此去噪算法具有较好的效果。

关 键 词:经验模态分解  间隔阈值经验模态分解  混合阈值  去噪
收稿时间:2019-07-14
修稿时间:2019-08-30

DENOISING METHODS BASED HYBRID THRESHOLDING EMPIRICAL MODE DECOMPOSITION CLEAR ITERATIVE INTERVAL THRESHOLDING
WANG Ping-gen and LV Jing-xiang. DENOISING METHODS BASED HYBRID THRESHOLDING EMPIRICAL MODE DECOMPOSITION CLEAR ITERATIVE INTERVAL THRESHOLDING[J]. Journal of Jinggangshan University(Natural Sciences Edition), 2019, 40(6): 41-46
Authors:WANG Ping-gen and LV Jing-xiang
Affiliation:Faculty of Electronics and Information Engineering, Jinggangshan University, Ji''an, Jiangxi 343009, China and Faculty of Electronics and Information Engineering, Jinggangshan University, Ji''an, Jiangxi 343009, China;Jiangxi Engineering Laboratory of IoT Technologies for Crop Growth, Ji''an Jiangxi 343009, China
Abstract:
Empirical mode decomposition is considered as a potential nonlinear and non-static signal denoising method. The traditional empirical mode decomposition threshold denoising has the disadvantage of discontinuity near zero. Kopsinis proposed the iterative EMD interval-thresholding and clear iterative EMD interval-thresholding methods. However, the two methods are too sensitive to the threshold. That is, the slight deviation of the interval extreme value may lead to the removal of the entire interval curve. Therefore, a hybrid thresholding algorithm which combines the strengths of EMD-DT and EMD-IT methods is proposed in this paper. Simulation results show that the denoising algorithm has good results.
Keywords:Empirical Mode Decomposition  EMD interval thresholding  hybrid thresholding  de-noising
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《井冈山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《井冈山大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号