摘 要: | 鉴于反向传播(Back Propagation,BP)神经网络算法收敛速度慢、局部极小化、结构选择不一的问题,提出结合灰色关联度分析的BP神经网络方法进行公路货运量预测,提高了模型的非线性学习和泛化能力及预测精度。该预测模型以江西省为例,首先利用灰色关联度分析确定预测目标的影响因子;然后,将关联度强的第一产业、第二产业和人均GDP作为公路货运预测模型的自变量,公路货运量和自变量作为训练样本,BP神经网络模型通过正向计算传播,误差反向传播,训练神经网络;最后,该方法应用于江西省公路货运量实际预测中进行有效性验证,结果表明该方法非线性拟合效果较好,具有较高的预测精度。
|