首页 | 本学科首页   官方微博 | 高级检索  
     

基于二次分形插值函数的分形插值曲面的变差与盒维数
引用本文:黄艳丽,冯志刚. 基于二次分形插值函数的分形插值曲面的变差与盒维数[J]. 河南科技大学学报(自然科学版), 2011, 32(3): 68-71,112
作者姓名:黄艳丽  冯志刚
作者单位:江苏大学,理学院,江苏镇江212013
基金项目:国家自然科学基金项目(51079064)
摘    要:
首先讨论了二次分形插值函数,进而研究由二次分形插值函数导出的分形插值曲面,并估计了其变差.再由二元连续函数的中心变差与图像计盒维数之间的关系,来确定分形插值曲面的计盒维数.

关 键 词:二次分形插值函数  中心变差  分形插值曲面  计盒维数

Variation and Minkowski Dimension of Fractal Interpolation Surface Derived from Quadratic Fractal Interpolation Function
HUANG Yan-Li,FENG Zhi-Gang. Variation and Minkowski Dimension of Fractal Interpolation Surface Derived from Quadratic Fractal Interpolation Function[J]. Journal of Henan University of Science & Technology:Natural Science, 2011, 32(3): 68-71,112
Authors:HUANG Yan-Li  FENG Zhi-Gang
Affiliation:HUANG Yan-Li,FENG Zhi-Gang (Faculty of Science,Jiangsu University,Zhenjiang 212013,China)
Abstract:
A class of quadratic fractal interpolation function was discussed.Based on that,the fractal interpolation surface derived from the fractal interpolation function was studied to estimate the variation of the surface.By deducing the relation between the minkowski dimension of the graph of bivariate continuous function and its variation,the value of the minkowski dimension of the fractal interpolation surface was obtained.
Keywords:Quadratic fractal interpolation function  Central variation  Fractal interpolation surface  Minkowski dimension  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号