首页 | 本学科首页   官方微博 | 高级检索  
     

采用非线性尺度空间滤波和SIFT的遥感影像配准方法
引用本文:施文灶1,2,3,4,毛政元1,3,4. 采用非线性尺度空间滤波和SIFT的遥感影像配准方法[J]. 华侨大学学报(自然科学版), 2016, 0(1): 38-42. DOI: 10.11830/ISSN.1000-5013.2016.01.0038
作者姓名:施文灶1  2  3  4  毛政元1  3  4
作者单位:1. 福州大学 空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350002;2. 福建师范大学 光电与信息工程学院, 福建 福州 350108;3. 福州大学 地理空间信息技术国家地方联合工程研究中心, 福建 福州 350002;4. 福州大学 福建省空间信息工程研究中心, 福建 福州 350002
摘    要:针对传统点特征匹配算法存在运算时间长和配准精度低的问题,提出一种基于非线性尺度空间滤波和尺度不变特征转换(SIFT)点特征配准算法.首先,通过非线性尺度空间滤波对基准影像和待配准影像分别进行预处理,保留其边缘信息并去除噪声.其次,采用SIFT算法对预处理后的两幅影像进行特征点提取,通过最近邻和次近邻的欧式距离比值法进行双向匹配,得到匹配特征点.最后,对待配准影像进行仿射变换.结果表明:该方法的总体运行时间比传统SIFT点特征配准算法降低63.2%,且配准精度大幅提高.

关 键 词:遥感影像  非线性尺度空间滤波  尺度不变特征转换  配准  仿射变换

Remotely Sensed Imagery Registration Based on Nonlinear Scale-Space Filtering and SIFT
SHI Wenzao1,2,3,' target="_blank" rel="external">4,MAO Zhengyuan1,3,' target="_blank" rel="external">4. Remotely Sensed Imagery Registration Based on Nonlinear Scale-Space Filtering and SIFT[J]. Journal of Huaqiao University(Natural Science), 2016, 0(1): 38-42. DOI: 10.11830/ISSN.1000-5013.2016.01.0038
Authors:SHI Wenzao1,2,3,' target="  _blank"   rel="  external"  >4,MAO Zhengyuan1,3,' target="  _blank"   rel="  external"  >4
Affiliation:1. Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education, Fuzhou University, Fuzhou 350002, China; 2. College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350108, China; 3. National Engineering Research Centre of Geospatial Information Technology, Fuzhou University, Fuzhou 350002, China; 4. Spatial Information Engineering Research Centre of Fujian Province, Fuzhou University, Fuzhou 350002, China
Abstract:To solve the problems of long executing time and low registration accuracy of the traditional point feature matching algorithm, this article proposed an improved scale-invariant feature transform(SIFT)point feature matching approach based on the nonlinear scale-space filtering. Firstly, the reference image and the to-be-registered one were respectively preprocessed with the nonlinear scale-space filter filtering. Secondly, feature points were extracted from the two images by means of the SIFT algorithm. Then, matched feature points were obtained through a bilateral matching by the ratio of Euclidean distances of the nearest neighbor to that of the next nearest one. Finally, an affine transformation was carried out to the to-be-registered image. Experimental results show that the executing time of the proposed method reduces 63.2% compared with the traditional SIFT point feature matching algorithm, and the registration accuracy is significantly improved.
Keywords:remotely sensed imagery  nonlinear scale-space filtering  scale-invariant feature transform  registration  affine transformation
本文献已被 CNKI 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号