首页 | 本学科首页   官方微博 | 高级检索  
     

基于ART2神经网络的入侵检测方法
引用本文:马锐,刘玉树,杜彦辉. 基于ART2神经网络的入侵检测方法[J]. 北京理工大学学报, 2004, 24(8): 701-704
作者姓名:马锐  刘玉树  杜彦辉
作者单位:北京理工大学,软件学院,北京,100081;北京理工大学,信息科学技术学院计算机科学工程系,北京,100081;中国人民公安大学,信息安全工程系,北京,100038
摘    要:
提出基于ART2神经网络的入侵检测方法.采集基于主机和基于网络的入侵特征数据,分析入侵行为的空间和时间关联性,并对入侵特征数据中的关联信息进行处理,提取入侵行为之间的关联性,降低入侵检测算法的复杂性;利用ART2算法的自学习能力、自组织能力、良好的稳定性和可塑性以及快速识别能力,实现对用户行为的近实时检测,取得了较高的检测准确率,在识别未知攻击方面具有较好的性能.

关 键 词:入侵检测  神经网络  自适应共振理论(ART)
文章编号:1001-0645(2004)08-0701-04
收稿时间:2003-10-18
修稿时间:2003-10-24

Adaptive Resonance Theory Neural Network Based Intrusion Detection Approach
MA Rui,LIU Yu-shu and DU Yan-hui. Adaptive Resonance Theory Neural Network Based Intrusion Detection Approach[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2004, 24(8): 701-704
Authors:MA Rui  LIU Yu-shu  DU Yan-hui
Affiliation:MA Rui~1,LIU Yu-shu~2,DU Yan-hui~3
Abstract:
An adaptive resonance theory neural network based intrusion detection approach is proposed. The approach processes both network-based and host-based data. After analyzing both the spatial and temporal associate relationship between intrusion behaviors, the approach processes the associate information of intrusion feature data to detect effectively the associate relationship between intrusion behaviors. With the abilities of self-learning and self-organization, with better stability-plasticity tradeoff and the capability of quick recognition of the adaptive resonance theory, the approach can be used to detect user behaviors in real-time, achieving good performance, especially in the recognition of unknown attacks.
Keywords:intrusion detection  neural networks  adaptive resonance theory (ART)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号