首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于距离的聚类和孤立点检测算法
引用本文:尚俊平,邱保志,刘合兵. 一种基于距离的聚类和孤立点检测算法[J]. 河南科学, 2007, 25(6): 975-978
作者姓名:尚俊平  邱保志  刘合兵
作者单位:1. 河南农业大学,计算机科学与技术系,郑州,450002
2. 郑州大学,信息工程学院,郑州,450052
摘    要:提出了一种基于距离的聚类和孤立点检测算法(DBCOD),根据距离阈值对数据点进行聚类,在聚类过程中记录每个数据点的密度,并根据密度阈值确定数据点是否为孤立点.实验结果表明,该算法不仅能够对数据集进行正确的聚类,可以发现任意形状的聚类,算法执行效率优于DBSCAN,具有对噪音数据、数据输入顺序不敏感等优点,同时还能有效地进行孤立点检测.

关 键 词:聚类算法  孤立点检测  距离  密度
文章编号:1004-3918(2007)06-0975-04
修稿时间:2007-07-18

A Clustering and Outlier Detection Algorithm Based on Distance
SHANG Jun-ping,QIU Bao-zhi,LIU He-bing. A Clustering and Outlier Detection Algorithm Based on Distance[J]. Henan Science, 2007, 25(6): 975-978
Authors:SHANG Jun-ping  QIU Bao-zhi  LIU He-bing
Abstract:A distance-based clustering and outlier detection algorithm(DBCOD)is proposed in this paper,it records the datum points by distance threshold,counts the density of every datum point in clustering,identifies outliers by density threshold,determinates valid cluster and outlier cluster by the number of datum points in it.As shown in the experimental results,the DBCOD algorithm can cluster the dataset properly,it can discover clusters of arbitrary shapes,its efficiency is higher than that of DBSCAN,it is independent of data input order,it is not sensitive to noise and outlier data;and it can find clusters and outliers accurately and validly.
Keywords:clustering algorithms  outlier detection  distance  density
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号