首页 | 本学科首页   官方微博 | 高级检索  
     

蒙特卡罗不确定性分析在受体模型来源解析中的应用
引用本文:田福林,陈景文,刘成雁,王志嘉,任雪冬,李红. 蒙特卡罗不确定性分析在受体模型来源解析中的应用[J]. 科学通报, 2011, 56(32): 2675-2680. DOI: 10.1360/972011-564
作者姓名:田福林  陈景文  刘成雁  王志嘉  任雪冬  李红
作者单位:辽宁省化学危害分析与处理技术重点实验室辽宁省分析科学研究院;工业生态与环境工程教育部重点实验室大连理工大学环境学院;
基金项目:辽宁省博士科研启动基金资助项目(20101051)
摘    要:利用蒙特卡罗模拟和虚拟数据矩阵对一种受体模型(非负约束的因子分析模型)来源解析结果的不确定性进行了分析. 假设多氯联苯(PCBs)产品Arolcor1016, Aroclor1248 和Aroclor1260 为PCBs 的3 个主要污染源, 并设定它们在40 个样品中的贡献值, 由此组成一个有25 种PCBs 系列物和40 个样品的虚拟数据矩阵, 通过对每个PCBs 系列物依次取变异系数(Cv) 0.1, 0.2, 0.4 和0.6, 以考察输入参数的不确定性对非负约束的因子分析模型输出结果的影响, 模型以随机数组为输入数据运行1000 次, 对输出结果进行统计分析得到均值和标准偏差等指标. 通过本研究表明, 当Cv 在0.4 之内时, 模型能够较为准确地解析出主要污染源的指纹谱图和贡献率, 在输入数据为正态分布的情况下, 输出结果也呈正态分布, 说明非负约束的因子分析模型有较好的稳健性. 受体模型解析结果的不确定性主要受到输入参数误差、污染源指纹谱图的相关性等因素的影响.

关 键 词:蒙特卡罗模拟  不确定性分析  受体模型  源解析  多氯联苯
收稿时间:2011-03-28

Uncertainty analysis of source apportionment by Monte Carlo methods:A case study of factor analysis with non-negative constraints
TIAN FuLin,,CHEN JingWen,LIU ChengYan,WANG ZhiJia,REN XueDong , LI Hong Liaoning key laboratory of analysis , treatment for hazardous chemicals,Liaoning Academy of Analytical Science,Shenyang ,China, Key Laboratory of Industrial Ecology , Environmental Engineering ,School of Environmental Science , Technology,Dalian University of Technology,Dalian. Uncertainty analysis of source apportionment by Monte Carlo methods:A case study of factor analysis with non-negative constraints[J]. Chinese Science Bulletin, 2011, 56(32): 2675-2680. DOI: 10.1360/972011-564
Authors:TIAN FuLin    CHEN JingWen  LIU ChengYan  WANG ZhiJia  REN XueDong & LI Hong Liaoning key laboratory of analysis    treatment for hazardous chemicals  Liaoning Academy of Analytical Science  Shenyang   China   Key Laboratory of Industrial Ecology    Environmental Engineering   School of Environmental Science    Technology  Dalian University of Technology  Dalian
Affiliation:TIAN FuLin1,2,CHEN JingWen2,LIU ChengYan1,WANG ZhiJia1,REN XueDong1 & LI Hong1 1 Liaoning key laboratory of analysis and treatment for hazardous chemicals,Liaoning Academy of Analytical Science,Shenyang 110015,China,2 Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education),School of Environmental Science and Technology,Dalian University of Technology,Dalian 116024
Abstract:Monte Carlo simulations were used to evaluate the uncertainties of a receptor model by factor analysis with non-negative constraints and an artificial data set. The Aroclors were assumed to be the main sources of the polychlorinated biphenyls (PCBs). The Aroclors considered were Aroclor 1016, Aroclor 1248 and Aroclor 1260. The 25 PCB congeners covered the entire range of molecular weights and some congeners were unique to individual Aroclors. The postulated source contributions were developed from 40 postul...
Keywords:Monte Carlo simulation  uncertainty analysis  receptor models  source apportionment  PCBs  
本文献已被 CNKI 等数据库收录!
点击此处可从《科学通报》浏览原始摘要信息
点击此处可从《科学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号