首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的自组织神经网络的基因剪切位点的识别
引用本文:苏洪全,朱义胜. 基于改进的自组织神经网络的基因剪切位点的识别[J]. 大连海事大学学报(自然科学版), 2009, 35(3)
作者姓名:苏洪全  朱义胜
作者单位:大连海事大学信息科学技术学院,辽宁大连,116026;大连海事大学信息科学技术学院,辽宁大连,116026
基金项目:国家自然科学基金资助项目(60671061)
摘    要:为提高基因序列中剪切位点的识别率,将无先导卡尔曼滤波器(UKF)和自组织神经网络(SOFM)相结合,给出一种非线性高维数据的聚类算法.利用无先导变换(UT)参数化SOFM邻域宽度函数的均值和方差,并采用UKF进行预测,完成SOFM参数的自适应过程.该算法用于基因剪切位点的识别结果表明:较SOFM与EKF参数自适应方法,该算法识别精度较高,验证了其有效性和可行性.

关 键 词:自组织神经网络(SOFM)  剪切位点  卡尔曼滤波器(KF)  扩展卡尔曼滤波器(EKF)  无先导卡尔曼滤波器(UKF)

Recognition of the splice sites based on improved self-organizing feature maps
SU Hong-quan , ZHU Yi-sheng. Recognition of the splice sites based on improved self-organizing feature maps[J]. Journal of Dalian Maritime University, 2009, 35(3)
Authors:SU Hong-quan    ZHU Yi-sheng
Affiliation:SU Hong-quan,ZHU Yi-sheng (Information Science , Technology College,Dalian Maritime University,Dalian 116026,China)
Abstract:A clustering method for large quantities of high-dimensional data which combining unscented Kalman filter(UKF) with self-organizing feature maps(SOFM) was proposed to improve the recognition accuracy of splice sites among the gene sequences.The mean and variance of width of the neighborhood function were parameterized by unscented transform(UT) and then predicted by UKF to complete adaptive process of SOFM parameters.Tests on recognizing gene splice sites show that the proposed method has higher recognition...
Keywords:self-organizing feature maps(SOFM)  splice sites  kalman filter(KF)  extend Kalman filter(EKF)  unscented Kalman filter(UKF)  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号