有序Banach空间分数阶微分方程边值问题正解的存在性 |
| |
引用本文: | 梁秋燕. 有序Banach空间分数阶微分方程边值问题正解的存在性[J]. 河南师范大学学报(自然科学版), 2014, 0(1): 16-20 |
| |
作者姓名: | 梁秋燕 |
| |
作者单位: | ;1.西北师范大学数学与统计学院 |
| |
摘 要: | 考虑有序Banach空间E中Riemann-Liouville分数阶微分方程-Dα0+u(t)=f(t,u(t))的两点边值问题正解的存在性,其中1<α≤2是实数,f:[0,1]×E→E连续.在较一般的非紧性测度条件下应用凝聚映射的不动点指数理论获得了该边值问题正解的存在性结果.
|
关 键 词: | 闭凸锥 凝聚映射 不动点指数理论 非紧性测度 边值问题 正解 |
Positive Solutions for the Boundary Value Problem of Fractional Differential Equations in Ordered Banach Spaces |
| |
Affiliation: | ,College of Mathematics and Statistics,Northwest Normal University |
| |
Abstract: | In this paper,we consider the postive solutions for boundary value problems of the Riemann-Liouville fractional differential equation-Dα 0 + u(t)=f(t,u(t))in an ordered Banach space E,where 1<α≤2is real number,f:[0,1]×E→E is continuous.Under more general conditions of noncompactness measure,the positive solutions are obtained by using the fixed point index theorem of condensing mapping. |
| |
Keywords: | close convex cone condensing mapping fixed point index noncompactness measure boundary value problems postive solution |
本文献已被 CNKI 等数据库收录! |