首页 | 本学科首页   官方微博 | 高级检索  
     

针对无人潜航器的反潜策略研究
引用本文:曾斌,张鸿强,李厚朴. 针对无人潜航器的反潜策略研究[J]. 系统工程与电子技术, 2022, 44(10): 3174-3181. DOI: 10.12305/j.issn.1001-506X.2022.10.21
作者姓名:曾斌  张鸿强  李厚朴
作者单位:1. 海军工程大学管理工程与装备经济系, 湖北 武汉 4300332. 海军工程大学导航工程系, 湖北 武汉 430033
基金项目:国家优秀青年科学基金(42122025);国家自然科学基金(41974005);湖北省杰出青年科学基金(2019CFA086)
摘    要:
近年来无人潜航器对国家海洋国土安全带来的威胁逐渐增大,其低噪声特性和隐蔽入侵方式也给反潜行动带来极大困难。为此,提出了一种两阶段规划算法,用以学习优化反潜策略,在部署阶段,建立了基于不确定性马尔可夫决策过程的反潜资源分配模型,并设计了鲁棒性部署策略强化学习算法,用以求解不确定条件下分配模型的纳什均衡解。在搜索阶段,建立了基于部分可观察马尔可夫决策过程的搜潜模型,并设计了基于多智能体强化学习的搜潜策略学习算法。最后,通过仿真实验验证了本算法与比对算法相比具有更高的性能。

关 键 词:反潜  无人潜航器  多智能体强化学习  博弈论
收稿时间:2021-12-22

Research on anti-submarine strategy for unmanned undersea vehicles
Bin ZENG,Hongqiang ZHANG,Houpu LI. Research on anti-submarine strategy for unmanned undersea vehicles[J]. System Engineering and Electronics, 2022, 44(10): 3174-3181. DOI: 10.12305/j.issn.1001-506X.2022.10.21
Authors:Bin ZENG  Hongqiang ZHANG  Houpu LI
Affiliation:1. Department of Management and Economics, Naval University of Engineering, Wuhan 430033, China2. Department of Navigation Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract:
In recent years, the threat of unmanned underwater vehicles (UUV) to national sea security has gradually increased. At the same, it is difficult to detect UUVs for its low noise and team intrusion. A two stage anti-submarine planning method is proposed to learn the optimal anti-submarine strategy. During the deployment stage, a resource allocation model based on uncertain Markov decision process (MDP) is proposed, whose Nash equilibrium point is solved by the elaborately designed robust reinforcement learning algorithm of the deployment strategy. In the search stage, a search model based on partially observable Markov decision process (POMDP) is proposed which is solved by the search strategy learning algorithm based on multi-agent reinforcement learning (MARL). Simulation results show that the proposed algorithm outperforms other algorithms.
Keywords:anti-submarine  unmanned underwater vehicle (UUV)  multi-agent reinforcement learning  game theory  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号