首页 | 本学科首页   官方微博 | 高级检索  
     

基于Adaboost的作战目标属性判定方法
引用本文:李园,史宪铭,李亚娟,赵美. 基于Adaboost的作战目标属性判定方法[J]. 系统工程与电子技术, 2022, 44(4): 1256-1262. DOI: 10.12305/j.issn.1001-506X.2022.04.23
作者姓名:李园  史宪铭  李亚娟  赵美
作者单位:1. 陆军工程大学石家庄校区装备指挥与管理系, 河北 石家庄 0500032. 陆军步兵学院石家庄校区机械化步兵系, 河北 石家庄 050227
基金项目:军队重点科研项目(LJ20202C050369);全军军事类研究生(JY2020B086)
摘    要:传统作战目标属性判定主要采用指挥员现场判断的定性方法, 具有一定的主观性, 并且由于缺乏较为成熟固定的算法而难以纳入指挥平台中。针对此问题, 结合作战目标属性判定关键影响因素分析, 提出一种基于自适应提升(adaptive boosting, Adaboost)的作战目标属性判定方法。首先, 针对目标有效面积、目标配置区域面积等关键因素, 采用单层决策树算法构建弱分类器。然后, 利用Adaboost对弱分类器进行加权组合, 形成作战目标属性判定的强分类模型。最后, 进行了示例分析, 并与决策树、支持向量机和人工神经网络3种属性判定方法进行对比仿真实验, 证明了所提方法的正确性和优越性。

关 键 词:作战目标  目标分类  自适应提升  决策树  
收稿时间:2021-03-08

Decision method of operational target attribute based on Adaboost
Yuan LI,Xianming SHI,Yajuan LI,Mei ZHAO. Decision method of operational target attribute based on Adaboost[J]. System Engineering and Electronics, 2022, 44(4): 1256-1262. DOI: 10.12305/j.issn.1001-506X.2022.04.23
Authors:Yuan LI  Xianming SHI  Yajuan LI  Mei ZHAO
Affiliation:1. Department of Equipment Command and Management, Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China2. Department of Mechanized Infantry, Shijiazhuang Campus, Army Infantry College, Shijiazhuang 050227, China
Abstract:The traditional battle target attribute judgment mainly adopts the qualitative method of commander's on-site judgment, which has a certain subjectivity, and it is difficult to be included in the command platform due to the lack of mature and fixed algorithm. To solve this problem, combined with the analysis of key influencing factors of combat target attribute determination, a combat target attribute determination method based on adaptive boosting (AdaBoost) is proposed. Firstly, aiming at the key factors such as target effective area and target configuration area, a single-layer decision tree algorithm is used to construct a weak classifier. Then, the weak classifiers are weighted and combined by AdaBoost to form a strong classification model for determining the attributes of combat targets. Finally, an example is analyzed and compared with three attribute determination methods: decision tree, support vector machine and artificial neural network. Simulation experiments show that the proposed method is correct and superior.
Keywords:operational target  target classification  adaptive boosting (Adaboost)  decision tree  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号