首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法
引用本文:唐一强,杨霄鹏,朱圣铭. 基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法[J]. 系统工程与电子技术, 2022, 44(12): 3863-3870. DOI: 10.12305/j.issn.1001-506X.2022.12.32
作者姓名:唐一强  杨霄鹏  朱圣铭
作者单位:空军工程大学信息与导航学院, 陕西 西安 710077
摘    要:针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题, 提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network, AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号, 得到卫星信号的训练集和测试集; 然后将训练集输入构建的训练网络进行特征提取; 最后将测试数据输入网络进行预测分析。仿真结果表明, 在与其他4种人工智能方法的对比中, 所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%), 有效地缓解了低轨道卫星信道参数“过时”的现状, 对提升卫星通信质量和节省卫星信道资源有良好的改善作用。

关 键 词:低轨卫星  信道预测  注意力机制  卷积神经和双向长短时记忆混合神经网络  
收稿时间:2021-11-12

Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism
Yiqiang TANG,Xiaopeng YANG,Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism[J]. System Engineering and Electronics, 2022, 44(12): 3863-3870. DOI: 10.12305/j.issn.1001-506X.2022.12.32
Authors:Yiqiang TANG  Xiaopeng YANG  Shengming ZHU
Affiliation:Information and Navigation College, Air Force Engineering University, Xi'an 710077, China
Abstract:To deal with the problem of the low earth orbit (LEO) satellite rapidly changing channels' qualities and outdated parameters, a channels prediction algorithm attention-convolutional neural network and bi-directional long-short term memory neural network(AT-CNN-BiLSTM) is proposed. The proposed method consists of the signals preprocessing, the network training and the signals prediction components. Simulating the outdoor satellite signals under the Gaussian white noise, a training set and a testing set of the satellite signals will be obtained. Then we input the training set into the training unit for features extraction, and finally input the testing set into the network for prediction analysis. The simulation results show that in the comparison of other four artificial intelligence methods, the hybrid neural network can achieve a high accuracy (91.8%) at a fast convergent speed, which effectively solves the difficulty of the LEO satellite outdated channel parameters. The proposed method can improve the satellite communication qualities and save the satellite channels' resources.
Keywords:low earth orbit (LEO) satellite  channels prediction  attention mechanism  hybrid convolutional neural network and bi-directional long-short term memory neural network (CNN-BiLSTM)  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号