首页 | 本学科首页   官方微博 | 高级检索  
     

基于协作式深度强化学习的火灾应急疏散仿真研究
引用本文:倪凌佳,黄晓霞,李红旮,张子博. 基于协作式深度强化学习的火灾应急疏散仿真研究[J]. 系统仿真学报, 2022, 34(6): 1353-1366. DOI: 10.16182/j.issn1004731x.joss.21-0108
作者姓名:倪凌佳  黄晓霞  李红旮  张子博
作者单位:1.中国科学院 空天信息创新研究院, 北京 1000942.中国科学院大学, 北京 1000493.自然资源部城市国土资源监测与仿真重点实验室, 深圳 518034
基金项目:国家自然科学基金(41971363);自然资源部城市国土资源监测与仿真重点实验室开放基金资助课题(KF-2018-03-032);国家重点研发计划(2017YFB0503905)
摘    要:火灾是威胁公共安全的主要灾害之一,火灾产生的高温和有毒有害烟气严重影响了疏散路径的选择。将深度强化学习引入到应急疏散仿真研究,针对多智能体环境提出了协作式双深度Q网络算法。建立随时间动态变化的火灾场景模型,为人员疏散提供实时的危险区域分布信息;对各自独立的智能体神经网络进行整合,建立多智能体统一的深度神经网络,实现所有智能体之间的神经网络和经验共享,提高整体协作疏散效率。结果表明:所提方法具有良好的稳定性和适应性,训练和学习效率得到提升,具有良好的应用价值。

关 键 词:协作式双深度Q网络算法  深度强化学习  多智能体系统  应急疏散仿真  火灾场景仿真
收稿时间:2021-02-04

Research on Fire Emergency Evacuation Simulation Based on Cooperative Deep Reinforcement Learning
Lingjia Ni,Xiaoxia Huang,Hongga Li,Zibo Zhang. Research on Fire Emergency Evacuation Simulation Based on Cooperative Deep Reinforcement Learning[J]. Journal of System Simulation, 2022, 34(6): 1353-1366. DOI: 10.16182/j.issn1004731x.joss.21-0108
Authors:Lingjia Ni  Xiaoxia Huang  Hongga Li  Zibo Zhang
Affiliation:1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China2.University of Chinese Academy of Sciences, Beijing 100049, China3.Key Laboratory of Urban Land Resources Monitoring and Simulation, MNR, Shenzhen 518034, China
Abstract:The fire accident is a major threat to the public safety, in which the high temperature, toxic and harmful gases seriously interfer the selection of the evacuation routes. Deep reinforcement learning is introduced into the research of emergency evacuation simulation, and a cooperative double deep Q network algorithm is proposed for the multi-agent environment. A fire scene model that changes dynamically over time is established to provide the real-time information on the distribution of the dangerous areas for the evacuation. The independent agent neural networks are integrated and the multi-agent unified deep neural network is established to realize the sharing of the neural network and experience among all agents, and improve the overall cooperative evacuation efficiency. The experimental comparison results show that the proposed method has the good stability and adaptability, improved training and learning efficiency, and good application value.
Keywords:cooperative double deep Q network algorithm  deep reinforcement learning  multi-agent system  emergency evacuation simulation  fire scenario simulation  
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号