首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据场联合决策图改进的GMM聚类
引用本文:王磊,张志勇,曾维贵,曹司磊,张天赫. 基于数据场联合决策图改进的GMM聚类[J]. 系统工程与电子技术, 2022, 44(9): 2743-2751. DOI: 10.12305/j.issn.1001-506X.2022.09.06
作者姓名:王磊  张志勇  曾维贵  曹司磊  张天赫
作者单位:1. 海军航空大学岸防兵学院, 山东 烟台 2640012. 中国人民解放军91827部队, 山东 威海 264000
基金项目:装备预研领域基金(6140247030216JB14004)
摘    要:
针对传统聚类方法在处理复杂电磁环境下的雷达信号时存在的聚类质量低、参数需要人为设置、易受孤立噪声脉冲干扰等问题, 提出一种基于数据场联合决策图改进的高斯混合模型(Gaussian mixture model, GMM)聚类算法。将数据场理论应用于数据对象密集程度的表征, 生成势能距离决策图, 进而自动实现聚类数目和中心点的选择, 最后结合GMM聚类实现对数据对象的聚类划分。仿真实验结果表明, 在脉冲到达角、脉宽、载频等参数存在较大抖动, 测量误差以及存在孤立噪声脉冲干扰和脉冲丢失时, 本文方法相较于现有典型分类方法具有更好的分选效果。

关 键 词:雷达信号分选  数据场  决策图  高斯混合模型聚类  
收稿时间:2021-11-18

An improved GMM clustering based on data field and decision graph
Lei WANG,Zhiyong ZHANG,Weigui ZENG,Silei CAO,Tianhe ZHANG. An improved GMM clustering based on data field and decision graph[J]. System Engineering and Electronics, 2022, 44(9): 2743-2751. DOI: 10.12305/j.issn.1001-506X.2022.09.06
Authors:Lei WANG  Zhiyong ZHANG  Weigui ZENG  Silei CAO  Tianhe ZHANG
Affiliation:1. Coastal Defense College, Naval Aviation University, Yantai 264001, China2. Unit 91827 of the PLA, Weihai 264000, China
Abstract:
Aiming at the problems of traditional clustering methods in processing radar signals in complex electromagnetic environment, such as low clustering quality, manual parameter setting and poor tolerance to isolated noise pulses, an improved Gaussian mixture model (GMM) clustering algorithm based on data field and decision graph is proposed. The data field theory is applied to the representation of the density of data objects, the potential energy distance decision graph is generated, and then the selection of cluster number and center point is realized automatically. Finally, the clustering division of data objects is realized combined with GMM. The simulation results show that this method has better sorting effect than the existing typical classification methods when there are significant jitter and measurement error in direction of arrival, pulse width and radio frequency, with the isolated noise pulses interference and pulse loss in the meantime.
Keywords:radar signal classification  data field  decision diagram  Gaussian mixture model (GMM) clustering  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号