利用人工神经网络进行感应电动机解耦控制 |
| |
作者姓名: | 邱阿瑞 孙健 |
| |
作者单位: | 清华大学,电机工程与应用电子技术系,北京,100084;清华大学,电机工程与应用电子技术系,北京,100084 |
| |
基金项目: | 国家“攀登 B计划”项目 |
| |
摘 要: | 为了使感应电动机具有象直流电动机一样优良的转矩与转速控制性能,提出了一种基于人工神经网络的感应电动机解耦控制方法。由于实时递归网络具有较强地表达和处理瞬态信息的能力,适合解决非线性动态系统问题,因此用递归网络构成的解耦控制器具有良好的动态特性。为减少这种神经网络解耦控制器的学习时间,提出了一种自适应学习算法,通过在网络学习的过程中不断地调整学习速率,从而加快了网络学习速度。仿真计算结果表明,这种神经网络解耦控制方式具有优良的动态响应特性。
|
关 键 词: | 人工神经网络 解耦控制器 磁场定向控制 感应电动机 |
修稿时间: | 1998-08-19 |
本文献已被 CNKI 万方数据 等数据库收录! |
|