首页 | 本学科首页   官方微博 | 高级检索  
     

半空间一维可压缩Navier-Stokes方程解的渐进性
引用本文:李艳军,施小丁. 半空间一维可压缩Navier-Stokes方程解的渐进性[J]. 北京化工大学学报(自然科学版), 2006, 33(4): 105-108
作者姓名:李艳军  施小丁
作者单位:北京化工大学理学院,北京 100029
摘    要:讨论了半空间中满足无渗透边界条件的一维黏性可压缩热传导流体的流动,给出了在小扰动和非等温条件下稀疏波的渐进稳定性。当速度在边界上为零时,证明了一维可压缩Navier-Stokes方程的解在半空间中随时间的增大而趋向于本文所定义的3-稀疏波。所用的证明方法为能量方法。

关 键 词:稀疏波  可压缩Navier-Stokes方程  无渗透边界  稀疏波  可压缩Navier-Stokes方程  无渗透边界
收稿时间:2005-11-03
修稿时间:2005-11-03

Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space
LI Yan-jun,SHI Xiao-ding. Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space[J]. Journal of Beijing University of Chemical Technology, 2006, 33(4): 105-108
Authors:LI Yan-jun  SHI Xiao-ding
Affiliation:College of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:One-dimensional compressible viscous and heat conductive fluid flow has been investigated in the half space. The asymptotic stability of the rarefaction wave has been established for the impermeable wall problem under small perturbation conditions and non-isothermal conditions. If the velocity is zero at the boundary, the solution of the Navier-Stokes equations is shown to tend toward a 3-rarefaction wave which has been defined. The proof is given by prior estimate and elementary energy method.
Keywords:rarefaction wave   compressible Navier-Stokes equations   impermeable wall problem
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号