首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识的深度强化学习研究综述
引用本文:李晨溪,曹雷,张永亮,陈希亮,周宇欢,段理文. 基于知识的深度强化学习研究综述[J]. 系统工程与电子技术, 2017, 39(11): 2603-2613. DOI: 10.3969/j.issn.1001-506X.2017.11.30
作者姓名:李晨溪  曹雷  张永亮  陈希亮  周宇欢  段理文
作者单位:1. 解放军理工大学指挥信息系统学院, 江苏 南京 210007;;2. 浙江大学机械工程学院, 浙江 杭州 310027
摘    要:作为解决序贯决策的机器学习方法,强化学习采取持续的“交互-试错”机制,实现智能体(Agent)与环境的不断交互,从而学得完成任务的最优策略,契合了人类提升智能的行为决策方式。知识作为一种包含了经验、价值观、认知规律以及专家见解等要素的结构化信息,应用于强化学习可以有效提高Agent的学习效率,降低学习难度。鉴于此,本文以强化学习的基本理论为起点,对深度强化学习以及基于知识的深度强化学习研究成果进行了系统性的总结与梳理。


Knowledge-based deep reinforcement learning: a review
LI Chenxi,CAO Lei,ZHANG Yongliang,CHEN Xiliang,ZHOU Yuhuan,DUAN Liwen. Knowledge-based deep reinforcement learning: a review[J]. System Engineering and Electronics, 2017, 39(11): 2603-2613. DOI: 10.3969/j.issn.1001-506X.2017.11.30
Authors:LI Chenxi  CAO Lei  ZHANG Yongliang  CHEN Xiliang  ZHOU Yuhuan  DUAN Liwen
Affiliation:1. Institute of Command Information System, PLA University of Science and Technology, Nanjing 210007, China;;2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract:As an important method to solve sequential decision problems, reinforcement learning adopts a mechanism of “trial and error” to interact with the environment, in order to learn the policy of the task. Know-ledge, as a kind of structured information, which contains the elements of experience, values, cognitive rules and expert opinions, can be effectively used to improve the learning efficiency of reinforcement learning. This paper takes the basic theory of reinforcement learning as a starting point, and systematically summarizes the deep reinforcement learning and knowledge-based reinforcement learning.
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号