首页 | 本学科首页   官方微博 | 高级检索  
     

基于有限单元的贝叶斯滤波估计算法
引用本文:陈立娟,杜建丽,陈俊宇. 基于有限单元的贝叶斯滤波估计算法[J]. 系统工程与电子技术, 2017, 39(10): 2305-2311. DOI: 10.3969/j.issn.1001-506X.2017.10.22
作者姓名:陈立娟  杜建丽  陈俊宇
作者单位:1. 武汉大学测绘学院, 湖北 武汉 430079;;2. 地球空间信息技术协同创新中心, 湖北 武汉 430079
摘    要:
现代工程系统具有较强的非线性特性,针对这类非线性系统的状态估计问题,提出基于有限单元的贝叶斯原理估计的非线性滤波方法。采用有限单元法逼近系统状态的先验概率解,即前向Kolmogorov方程的解,通过贝叶斯估计得到状态的后验信息。将其方法应用到惯性/地形组合导航系统中,仿真结果表明该方法的可行性。


Bayesian filtering estimation approach based on finite element method
CHEN Lijuan,DU Jianli,CHEN Junyu. Bayesian filtering estimation approach based on finite element method[J]. System Engineering and Electronics, 2017, 39(10): 2305-2311. DOI: 10.3969/j.issn.1001-506X.2017.10.22
Authors:CHEN Lijuan  DU Jianli  CHEN Junyu
Affiliation:1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079,China; 2. Collaborative;Innovation Center for Geospatial Technology, Wuhan 430079, China
Abstract:
For modern engineering systems, the nonlinear state estimation is a crucial and important problem. A method applying the finite element method to approximate the probability density function of the nonlinear system state is proposed. The approximate solution of the stochastic differential model is denoted by the Kolmogorov's forward equation, but it is very difficult to be obtained. This article constructs its interpolating point through the finite element method, then it approaches its solution through the interpolation function to obtain a prior probability density function of the state, then, a posterior probability density function is gained through Bayesian formula. Finally, by taking the inertia terrain aided integrated navigation system as the background and performing the comparison analysis with the particle filter, the feasibility of this method is verified by numerical simulation.
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号