首页 | 本学科首页   官方微博 | 高级检索  
     

基于波形聚类分析的微地震监测事件类型判别及应用
引用本文:翟尚,喻志超,谭玉阳,黄芳飞,刘玲,胡天跃,何川. 基于波形聚类分析的微地震监测事件类型判别及应用[J]. 北京大学学报(自然科学版), 2020, 56(3): 406-416. DOI: 10.13209/j.0479-8023.2020.018
作者姓名:翟尚  喻志超  谭玉阳  黄芳飞  刘玲  胡天跃  何川
作者单位:1. 北京大学地球与空间科学学院, 北京大学石油与天然气研究中心, 北京 1008712. 中国科学技术大学地球和空间科学学院, 合肥 2300263. 中国地质调查局广州海洋地质调查局, 广州 510760
基金项目:中国地质调查局天然气水合物专项(DD20190232-6)和国家重点研发计划(2017YFC0307605, 2017YFC0307702)资助
摘    要:
以不同类型微地震监测事件在波形相似性上的差异为基础,结合发生位置、走时规律和偏振方向等方面的特征,提出一种基于波形聚类分析的微地震监测事件类型判别方法。首先使用常规的微地震事件识别算法,快速地得到待分类的疑似事件;然后进行波形聚类分析,结合事件的属性特征,实现对不同类型微地震事件及噪声事件的分类和判别。分类结果可用于波形模板匹配,识别同类的低信噪比微地震事件;还可将所有同类事件作为一个整体,采用全局优化手段提高初至拾取的精度。

关 键 词:波形互相关  微地震事件  层次聚类  属性提取
收稿时间:2019-05-08

Microseismic Monitoring Events Classification Based on Waveform Clustering Analysis and Application
ZHAI Shang,YU Zhichao,TAN Yuyang,HUANG Fangfei,LIU Ling,HU Tianyue,HE Chuan. Microseismic Monitoring Events Classification Based on Waveform Clustering Analysis and Application[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 406-416. DOI: 10.13209/j.0479-8023.2020.018
Authors:ZHAI Shang  YU Zhichao  TAN Yuyang  HUANG Fangfei  LIU Ling  HU Tianyue  HE Chuan
Affiliation:1. Institute of Oil & Gas, School of Earth and Space Sciences, Peking University, Beijing 1008712. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 2300263. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510760
Abstract:
Based on the difference of waveform similarity between different types of microseismic monitoring events and combined with their characteristics in occurrence location, traveling time and polarization direction etc., a method for classifying microseismic monitoring events based on waveform clustering analysis is proposed. Firstly unclassified events can be identified rapidly using conventional microseismic event detection methods, then similar events are grouped based on waveform clustering analysis, finally the types of microseismic events or noise events are determined combining the attribute characteristics. Classified microseismic events can be further used for template matching technique to finely detect similar events with low signal-to-noise ratio. Meanwhile the global optimization approach which aims to improve the accuracy of arrival time picking can be also performed by taking similar microseismic events as a whole.
Keywords:feature extraction  waveform cross correlation  microseismic event  hierarchal clustering  feature extraction  
本文献已被 CNKI 等数据库收录!
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号