首页 | 本学科首页   官方微博 | 高级检索  
     

基于Kriging模型与重要性抽样的可靠性灵敏度分析
引用本文:王娟,马义中,汪建均. 基于Kriging模型与重要性抽样的可靠性灵敏度分析[J]. 系统工程理论与实践, 2017, 37(9): 2440-2449. DOI: 10.12011/1000-6788(2017)09-2440-10
作者姓名:王娟  马义中  汪建均
作者单位:南京理工大学 经济管理学院, 南京 210094
基金项目:国家自然科学基金(71471088,71371099);中国博士后科学基金(2014T70527)
摘    要:针对因无法获得功能函数的梯度信息而不能使用解析方法的情形,提出了进行可靠性灵敏度分析的高效的仿真方法,首先基于Kriging模型和重要性抽样去计算失效概率,然后通过记分函数(score function)方法求出失效概率对各个参数的偏导数。在计算失效概率时采用反问题(inversion problems)中的不确定性逐步减少(stepwise uncertainty reduction)准则来更新功能函数的Kriging模型,继而在重要性抽样的框架下将失效概率表示成一个"增大"的失效概率与修正项的乘积;而记分函数方法只是对前面抽样方法的一个简单后处理,不需要计算额外的功能函数值.对所提方法使用算例验证表明:当功能函数为昂贵的计算模型或对系统(非单个构件)进行灵敏度分析时,该方法具有较高的计算效率和精度。

关 键 词:失效概率  Kriging模型  重要性抽样  SUR准则  记分函数  
收稿时间:2016-09-27

Reliability sensitivity analysis based on Kriging model and importance sampling
WANG Juan,MA Yizhong,WANG Jianjun. Reliability sensitivity analysis based on Kriging model and importance sampling[J]. Systems Engineering —Theory & Practice, 2017, 37(9): 2440-2449. DOI: 10.12011/1000-6788(2017)09-2440-10
Authors:WANG Juan  MA Yizhong  WANG Jianjun
Affiliation:School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Due to the lack of the gradient information, the reliability sensitivity analysis can't be implemented in an analytical manner. Therefore the paper proposed a simulation-based sensitivity method. It is suggested to compute the failure probability by the combination of Kriging model and importance sampling at first, and then the estimator of failure probability is differentiated through the score function approach. The combination of Kriging and importance sampling resorts to the construction of an accurate Kriging surrogate of the limit state function through stepwise uncertainty reduction (SUR) criterion which is commonly used in inversion problems, and score function approach enables the estimation of the gradient of the failure probability without any additional evaluation to the limit state function. The numerical examples illustrate that the proposed method is efficient and precise, especially when the performance function involves the output of an expensive-to-evaluate computational model or the analysis of a system (not a component) is considered.
Keywords:failure probability  Kriging model  importance sampling  stepwise uncertainty reduction criterion  score function  
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号