首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊集和改进DS证据理论的危化品道路运输体系贝叶斯网络风险分析
引用本文:贾进章,陈怡诺,柯丁琳. 基于模糊集和改进DS证据理论的危化品道路运输体系贝叶斯网络风险分析[J]. 北京化工大学学报(自然科学版), 2020, 47(1): 38-45. DOI: 10.13543/j.bhxbzr.2020.01.007
作者姓名:贾进章  陈怡诺  柯丁琳
作者单位:1. 辽宁工程技术大学 安全科学与工程学院, 阜新 123000;2. 辽宁工程技术大学 安全科学与工程研究院, 阜新 123000;3. 辽宁工程技术大学 矿山热动力灾害与 防治教育部重点实验室, 阜新 123000
基金项目:国家自然科学基金(51374121);辽宁省特聘教授资助项目(551710007007);辽宁省百万人才工程资助项目(2019-45-15);辽宁省自然科学基金(2019-MS-162)
摘    要:针对危化品道路运输体系中影响因素信息的不确定性和专家知识推断贝叶斯网络中条件概率表时存在的主观性,提出了一种将模糊集和改进Dempster/Shafer证据理论(DS证据理论)、贝叶斯网络结合在一起的危化品道路运输体系的风险评价方法。根据危化品道路运输体系的影响因素建立了相应的风险评价体系,确定各层级的评价指标。将专家对各评价指标的评价意见代入高斯型隶属度函数构造隶属度矩阵,进行改进DS证据理论数据融合,得到多位专家评价意见融合后的概率值分布。利用贝叶斯网络的推理功能,得出危化品道路运输体系的风险等级和其中各评价指标的概率值分布,找出体系薄弱环节并进行分析。以沈阳某危险货物托运有限公司为例进行研究,结果表明该公司中危化品道路运输体系的风险值为0.611 8,风险等级为较危险(V2),其中人员因素概率(60%)和管理因素概率(52%)所占权重较大,需要公司重点关注并加强管理。

关 键 词:危化品道路运输体系  模糊集合理论  改进DS证据理论  贝叶斯网络  风险评价  安全工程  
收稿时间:2019-04-11

Risk analysis of a Bayesian network for harmful chemicals road transportation systems based on fuzzy sets and improved Dempster/Shafer (DS) evidence theory
JIA JinZhang,CHEN YiNuo,KE DingLin. Risk analysis of a Bayesian network for harmful chemicals road transportation systems based on fuzzy sets and improved Dempster/Shafer (DS) evidence theory[J]. Journal of Beijing University of Chemical Technology, 2020, 47(1): 38-45. DOI: 10.13543/j.bhxbzr.2020.01.007
Authors:JIA JinZhang  CHEN YiNuo  KE DingLin
Affiliation:1. School of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China;2. Institute of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China;3. Key Laboratory of Mine Thermal Dynamics and Prevention, Ministry of Education, Liaoning Technical University, Fuxin 123000, China
Abstract:There is considerable uncertainty about the factors influencing road transportation systems of hazardous chemicals and the conditional probability table inferred from expert knowledge in a Bayesian network is also highly subjective. This paper proposes a risk assessment method for road transportation systems of hazardous chemicals which combines fuzzy sets and improved Dempster/Shafer (DS) evidence theory to give a Bayesian network for combined risk assessment of hazardous chemicals road transport systems. For each of the factors influencing hazardous chemicals road transportation systems, the corresponding risk assessment system was established to determine the evaluation indicators of each level. Expert evaluation of each evaluation indicator was then substituted into the Gaussian membership function to construct the membership grade matrix, and the data fusion of the improved DS evidence theory algorithm was carried out to obtain the basic probability distribution of the evaluation opinions after the fusion of multiple experts. The resulting evaluation indicators allowed the weak links in the system to be identified and analyzed. Taking a hazardous goods consignment company in Shenyang as an example, the results show that the risk in transporting hazardous chemicals is relatively high (V2), with the probability of human factors being responsible of 60% and the probability of management factors being 52%. Both of these have a large weight, which requires the company to focus on strengthening its management structure.
Keywords:hazardous chemicals road transport system  improved DS evidence theory algorithm  Bayesian network  risk assessment  safety engineering  
本文献已被 CNKI 等数据库收录!
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号