首页 | 本学科首页   官方微博 | 高级检索  
     

带信息素回访机制的多无人机分布式协同目标搜索
引用本文:刘重,高晓光,符小卫. 带信息素回访机制的多无人机分布式协同目标搜索[J]. 系统工程与电子技术, 2017, 39(9): 1998-2011. DOI: 10.3969/j.issn.1001-506X.2017.09.13
作者姓名:刘重  高晓光  符小卫
作者单位:(西北工业大学电子信息学院, 陕西 西安 710129)
摘    要:为了提高无人机对目标的搜索捕获能力和对不确定度较高的区域的回访能力,进而提高多无人机协同搜索效率,提出了一种带信息素回访机制的多无人机协同目标搜索方法。首先,建立了包含目标存在概率地图、不确定地图和数字信息素地图在内的环境感知地图及其更新机理,使得无人机对任务区域中环境和目标信息的感知更加全面和准确,为无人机在线自主地进行搜索决策奠定基础。其次,考虑到任务子区域的可控回访需求,借鉴信息素“释放-传播-挥发”的特性,设计了基于信息素的网格回访机制,来引导无人机对目标存在可能性较大的区域或者不确定度较高的区域进行回访搜索。最后,设计了基于环境感知地图的协同搜索决策性能指标,在分布式滚动时域优化框架下,建立了多无人机协同搜索决策方法。使用蒙特卡罗方法验证了无人机数量、传感器探测靶面半径、传感器性能对搜索效率的影响。对比仿真表明,信息素回访机制能够保证较强的遍历能力和回访能力,使得无人机能够尽早搜索到更多的目标,尽快地降低整个搜索区域的不确定度。


Multi-UAVs distributed cooperative target search algorithm with controllable revisit mechanism based on digital pheromone
LIU Zhong,GAO Xiaoguang,FU Xiaowei. Multi-UAVs distributed cooperative target search algorithm with controllable revisit mechanism based on digital pheromone[J]. System Engineering and Electronics, 2017, 39(9): 1998-2011. DOI: 10.3969/j.issn.1001-506X.2017.09.13
Authors:LIU Zhong  GAO Xiaoguang  FU Xiaowei
Affiliation:(School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China)
Abstract:To improve the capability of multiple unmanned aerial vehicles (UAVs) for target searching and revising the region with high uncertainty,and then improve the effectiveness of multiple UAVs cooperative area target search, a multi-UAVs cooperative area target search method with controllable revisit to sub mission areas is presented. Firstly, an environment aware map that includes the target probability map, the uncertain map, the digital pheromone map and their calculating mechanisms are established. Secondly, considering the requirement of controllable revisiting to sub mission areas, a controllable revisiting mechanism is developed which is based on the characteristic of the pheromone, such as “secrete, propagate and evaporate”. This mechanism can control the UAVs to revisit sub mission areas with high target probability or maximum uncertainty. Thirdly, the optimizing functions based on the environment aware map are designed, in the frame of distributed receding horizon optimizing, a new decision making method for multi-UAVs cooperative area target search is established. The Monte Carlo method is employed to validate the impact of different number of UAV, sensing radius and sensor performance (sensor fidelity rate and false alarm rate) on the multi-UAVs cooperative area search. The simulation results prove that the controllable revisiting mechanism can guarantee the superior traversing ability, the revisiting ability and the target search efficiency.
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号