首页 | 本学科首页   官方微博 | 高级检索  
     

带分段仓储能力决策的动态批量优化问题研究
引用本文:范捷,王国庆. 带分段仓储能力决策的动态批量优化问题研究[J]. 系统工程理论与实践, 2017, 37(10): 2592-2599. DOI: 10.12011/1000-6788(2017)10-2592-08
作者姓名:范捷  王国庆
作者单位:暨南大学 管理学院, 广州 510632
基金项目:本研究由暨南大学企业发展研究所提供部分资助.
摘    要:本文考虑一个单一产品仓储能力决策和库存决策的动态批量集成优化问题.在这个模型中,长度为T个周期的计划期被划分成连续的若干段,每段初需制定该段的仓储能力决策,同一段中各期的期末库存水平均受限于该段仓储能力.假设每段仓储能力费用为仓储能力的非减函数,各期的产品订货费用为固定费用,库存保管费用是一个期末库存量的线性函数.利用分解技术和几何技术,本文开发一个计算复杂度为O(T~3)的动态规划算法.计算测试显示,该算法与求解混合整数规划(MIP)的商业软件相比,在计算时间上具有明显的优势.

关 键 词:动态批量  仓储能力计划  计算复杂度  
收稿时间:2016-03-30

Dynamic lot sizing problem with section storage capacity decisions
FAN Jie,WANG Guoqing. Dynamic lot sizing problem with section storage capacity decisions[J]. Systems Engineering —Theory & Practice, 2017, 37(10): 2592-2599. DOI: 10.12011/1000-6788(2017)10-2592-08
Authors:FAN Jie  WANG Guoqing
Affiliation:School of Management, Jinan University, Guangzhou 510632, China
Abstract:A single item dynamic lot sizing problem integrated with storage capacity and inventory decisions is considered. Given a T-periods planning horizon being partitioned into a series of sections, storage capacity decisions are made at the beginning of each section, and the ending inventory of each period is limited by the storage capacity of section containing it. Assume that section storage capacity cost is a non-decreasing function, ordering cost is a fixed charge, and holding cost is a linear function. By applying decomposition techniques and geometric techniques, an O(T3) algorithm is presented. Comparing with commercial MIP solver, the saving in computation times of this algorithm is excellent.
Keywords:dynamic lot sizing  storage capacity plan  computational complexity  
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号