首页 | 本学科首页   官方微博 | 高级检索  
     

多层混沌神经网络及其在交通量预测中的应用
引用本文:董超俊,刘智勇. 多层混沌神经网络及其在交通量预测中的应用[J]. 系统仿真学报, 2007, 19(19): 4450-4453
作者姓名:董超俊  刘智勇
作者单位:五邑大学信息学院,广东,江门,529020
基金项目:广东省自然科学基金;广东省自然科学基金
摘    要:研究多层混沌神经网络及其在交通量预测中的应用问题。以BP网络和混沌理论为基础,提出了一种在隐层中包含混沌神经元的多层混沌神经网络。XOR问题实验得出:该混沌神经网络能有效地强化网络的非线性和学习效率。鉴于城市交通流具有明显的混沌特性,将该混沌神经网络应用于城市交通流的预测。对广东江门市某路口交通量的预测结果显示出:采用该混沌神经网络,预测误差一般可以控制在10%以下(或左右)。该网络还可以应用于其他混沌系统的预测和控制。

关 键 词:混沌神经网络  混沌神经元  学习效率  交通量  预测
文章编号:1004-731X(2007)19-4450-04
收稿时间:2006-08-01
修稿时间:2007-04-04

Multi-layer Neural Network Involving Chaos Neurons and Its Application to Traffic-flow Prediction
DONG Chao-jun,LIU Zhi-yong. Multi-layer Neural Network Involving Chaos Neurons and Its Application to Traffic-flow Prediction[J]. Journal of System Simulation, 2007, 19(19): 4450-4453
Authors:DONG Chao-jun  LIU Zhi-yong
Affiliation:Institute of Information, Wuyi University, Jiangmen 529020, China
Abstract:To investigate multi-layer chaos neural networks (MLCNN) and its application in traffic-flow forecasting,a multi-layer chaos network involving chaos neurons in hidden layer was developed based on BP network and chaos theory. The learning ability of the MLCNN was evaluated by benchmark experiment with XOR problem,and the experimental results show the feasibility of the chaos neurons to reinforce the learning ability and non-linear of the network. Urban traffic system could be regard as a chaotic system,so the MLCNN was used in prediction to traffic flow. The test result to certain intersection in Jiangmen city shows that the prediction error could be controlled below (or around) 10%. The MLCNN could also be used in prediction and control to the other chaotic systems.
Keywords:chaos neural network  chaos neurons  efficiency of learning  traffic flow  prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号