首页 | 本学科首页   官方微博 | 高级检索  
     

基于全局-局部保持投影的稀疏降维方法
引用本文:江粼,房小兆,滕少华. 基于全局-局部保持投影的稀疏降维方法[J]. 江西师范大学学报(自然科学版), 2021, 45(1): 46-54. DOI: 10.16357/j.cnki.issn1000-5862.2021.01.07
作者姓名:江粼  房小兆  滕少华
作者单位:1.广东工业大学计算机学院,广东广州 510006; 2. 广东工业大学自动化学院,广东广州 510006
摘    要:
该文提出了一种基于全局-局部结构保持的稀疏投影模型(GLSPP).通过对投影数据进行线性重构来保持数据的全局结构,从而保留投影数据的全局信息.通过约束重构系数矩阵与相似性矩阵的相似性来保持全局保持数据和局部保持投影数据的一致性.同时,对重构系数矩阵和相似性矩阵进行稀疏约束,保留主要信息,以减少冗余信息的干扰.在公开的4个人脸与物体数据集上的实验结果显示:该方法具有较高的分类准确率.

关 键 词:局部结构保持投影  线性重构  稀疏约束  降维

The Sparse Dimensional Reduction Based on Globality-Locality Preserving Projection
JIANG Lin,FANG Xiaozhao,TENG Shaohua. The Sparse Dimensional Reduction Based on Globality-Locality Preserving Projection[J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2021, 45(1): 46-54. DOI: 10.16357/j.cnki.issn1000-5862.2021.01.07
Authors:JIANG Lin  FANG Xiaozhao  TENG Shaohua
Affiliation:1.School of Computers,Guangdong University of Technology,Guangzhou Guangdong 510006,China; 2.School of Automation,Guangdong University of Technology,Guangzhou Guangdong 510006,China
Abstract:
The global-local structure preserving sparse projection model(GLSPP)is proposed in this paper.The global structure of the projection data is preserved by linear reconstruction of the projection data,thus preserving the global information of the projection data.By constraining the similarity between reconstruction coefficient matrix and similarity matrix,the consistency of global preserving data and local preserving projection data is maintained.At the same time,sparse constraints to the reconstruction coefficient matrix and similarity matrix are applied to retain the main information in order to reduce the interference of redundant information.Experimental results on four face and object datasets show that the proposed algorithm has good classification accuracy.
Keywords:locality preserving projection  linear reconstruction  sparse constraint  dimensionality reduction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《江西师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《江西师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号