摘 要: | 针对金枪鱼群优化(Tuna Swarm Optimization, TSO)算法前期收敛速度慢和容易陷入局部最优等不足,提出混合策略改进的金枪鱼群优化算法(Improved Tuna Swarm Optimization Algorithm Based on Hybrid Strategy, HTSO)。首先,用Circle混沌映射初始化种群,提高种群的丰富性;其次,利用莱维飞行(Levy flight)在空间随机游走的搜索特点,提高算法在螺旋式觅食时的幅度,减少算法陷入局部最优的次数,帮助其快速找到全局最优。通过14个基准测试函数,在不同维数下比较传统TSO算法、HTSO、鲸鱼优化算法(Whale Optimization Algorithm, WOA)、灰狼优化(Grey Wolf Optimizer, GWO)算法和哈里斯鹰优化(Harris Hawks Optimization, HHO)算法的性能。仿真结果表明,不管是在低维还是在高维的情况下,HTSO比其他4种算法有更好的寻优性能和鲁棒性。最后对HTSO进行wilcoxon秩和检验,验证结果表明,HTSO与其他对比算法存在显...
|