首页 | 本学科首页   官方微博 | 高级检索  
     

储层含油性识别中ANN和GA融合的模糊规则提取
引用本文:郭海湘,诸克军,高思维,孙涵. 储层含油性识别中ANN和GA融合的模糊规则提取[J]. 系统管理学报, 2008, 17(6)
作者姓名:郭海湘  诸克军  高思维  孙涵
作者单位:中国地质大学经济管理学院,武汉,430074
基金项目:国家自然科学基金,高等学校博士学科点专项科研基金,湖北省教育厅人文社会科学研究项目 
摘    要:提出一种基于ANN和GA融合的自学习自适应的模糊规则提取算法,用来对油层进行识别.其方法是:首先运用人工神经网络(ANN)对训练样本进行有导师学习,网络的输入是测井属性,输出表达为网络权值和输入的函数Ψk=f(xi(WG1)ij,(WG2)jk)(其中:Ψk代表含油性类别Ck的判别函数;C1为干层;C2为水层;C3为差油层;C4为油层).然后,以Ψk作为遗传算法(GA)中的适应度函数提取对应于类别Ck的模糊规则.最后,通过某油田oilsk81和oilsk83油井的实证研究表明,该方法能够有效地识别储层的含油性.

关 键 词:人工神经网络  遗传算法  模糊规则  储层识别  测井属性

Extracting Fuzzy Rules Based on Fusion of ANN and GA in Reservoir for Recognizing Oil-bearing Characteristics
GUO Hai-xiang,ZHU Ke-jun,GAO Si-wei,SUN Han. Extracting Fuzzy Rules Based on Fusion of ANN and GA in Reservoir for Recognizing Oil-bearing Characteristics[J]. Systems Engineering Theory·Methodology·Applications, 2008, 17(6)
Authors:GUO Hai-xiang  ZHU Ke-jun  GAO Si-wei  SUN Han
Affiliation:School of Management and Economics;China University of Geosciences;Wuhan 430074;China
Abstract:This paper proposed a self-adapting algorithm(ANN-GA-Cascades) for extracting fuzzy rule,which is based on fusion of ANN and GA and used for recognizing oil-bearing characteristics in reservoir.Firstly,supervised learning of training sample is performed by using neural networks,with the inputs being hte simples well-logging attribute set,and the outputs being corresponding oil-bearing characteristics C_k(C_1 denotes dry layer,C_2 denotes water layer,C_3 denotes inferior oil layer and C_4 denotes oil layer)....
Keywords:artificial neural networks  genetic algorithm  fuzzy rules  reservoir  well logging  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号