摘 要: | 水路运输是交通和货运的重要组成部分,水路货运量的预测对各地经济发展有重要意义。近年来随着经济形势的变化和多式联运的快速发展,水路货运量的数据波动加大,精准预测的难度变得更大。因此提出一种基于长短期记忆网络(Long Short-Term Memory,LSTM)和径向基神经网络(Radial basis function,RBF)的组合预测模型 。在LSTM-RBF预测模型中,第一阶段通过LSTM对各指标进行精准预测,减少指标值误差对目标值预测带来的影响;第二阶段训练RBF神经网络并在未来指标值的基础上对目标值(水路货运量)进行预测。该模型既避免了时间序列预测仅考虑单一影响因素的缺陷,又能够把LSTM的长时记忆优势带入到RBF的回归预测中。实验结果表明,LSTM-RBF预测模型在均方根误差和拟合度方面,均优于其他对比模型,该预测模型对水路货运量的预测有着较高的准确度。
|